Find the best solutions to your problems with the help of IDNLearn.com's expert users. Get accurate and comprehensive answers to your questions from our community of knowledgeable professionals.
Sagot :
Sure, let's solve the differential equation step by step. The equation is:
[tex]\[ \frac{(2t^2 + 3t)}{(2s + s)} \frac{ds}{dt} = \frac{t}{s+1} \][/tex]
First, let's simplify the equation. Note that [tex]\(2s + s = 3s\)[/tex], so the equation becomes:
[tex]\[ \frac{2t^2 + 3t}{3s} \frac{ds}{dt} = \frac{t}{s+1} \][/tex]
Now, we can separate variables. Multiply both sides by [tex]\(3s(s+1)\)[/tex] to get:
[tex]\[ (2t^2 + 3t) \, ds = 3s \cdot t \, dt \][/tex]
Now we can integrate both sides separately. Rewrite the equation in a separated form:
[tex]\[ \int \frac{3s}{2t^2 + 3t} \, ds = \int t(s+1) \, dt \][/tex]
We need to solve these integrals:
### Left Integral:
Let's integrate the left side with respect to [tex]\(s\)[/tex]:
[tex]\[ \int \frac{3s}{2t^2 + 3t} \, ds \][/tex]
### Right Integral:
For the right side, we integrate with respect to [tex]\(t\)[/tex]:
[tex]\[ \int t(s+1) \, dt \][/tex]
Let's focus on integrating these properly.
### Simplify by separable variables:
Separate and integrate as follows:
[tex]\[ \int \frac{1}{s} \, ds = \int \frac{t}{2t^2 + 3t} \, dt + \int \frac{1}{2t^2 + 3t} \, dt \][/tex]
For the simplicity purpose, we need to look at the integrals:
[tex]\[ \int \frac{1}{s} \, ds = \ln|s| + C_1 \][/tex]
Similarly, rewrite the integral on the right-hand side by separating as follows:
[tex]\[ \int \left( \frac{t}{2t^2 + 3t} + \frac{1}{2t^2 + 3t} \right) \, dt \][/tex]
We notice that the first integral can be solved by direct observation and use of logarithm properties:
### Integrate with partial fraction decomposition:
[tex]\[ \int t \left( \frac{1}{t(2t + 3)} \right) \, dt + \int \left( \frac{1}{2t(t + \frac{3}{2})} \right) \, dt \][/tex]
Hence the right-hand integral becomes:
### Substitution on left integral:
Using u-substitution where [tex]\(u = 2t^2+3t \)[/tex]:
[tex]\[ \int \frac t{u} du = \frac{\ln|u|}{2} \][/tex]
Integrate right-hand...
So, combining all:
[tex]\(\ln|s| = \frac{\ln|2t^2+ 3t|}{2} \)[/tex]
Solving the equation, we get
[tex]\(\boxed{s(t)} = e^{\frac{\ln|u|}{2}}}= \sqrt{u}} Boundary conditionsir \(|u | = |2t^2+3t|\)[/tex]
Hence \(\sqrt(u) }= sqrt(2t^3+ 3t
With constant `C`
[tex]\[ \frac{(2t^2 + 3t)}{(2s + s)} \frac{ds}{dt} = \frac{t}{s+1} \][/tex]
First, let's simplify the equation. Note that [tex]\(2s + s = 3s\)[/tex], so the equation becomes:
[tex]\[ \frac{2t^2 + 3t}{3s} \frac{ds}{dt} = \frac{t}{s+1} \][/tex]
Now, we can separate variables. Multiply both sides by [tex]\(3s(s+1)\)[/tex] to get:
[tex]\[ (2t^2 + 3t) \, ds = 3s \cdot t \, dt \][/tex]
Now we can integrate both sides separately. Rewrite the equation in a separated form:
[tex]\[ \int \frac{3s}{2t^2 + 3t} \, ds = \int t(s+1) \, dt \][/tex]
We need to solve these integrals:
### Left Integral:
Let's integrate the left side with respect to [tex]\(s\)[/tex]:
[tex]\[ \int \frac{3s}{2t^2 + 3t} \, ds \][/tex]
### Right Integral:
For the right side, we integrate with respect to [tex]\(t\)[/tex]:
[tex]\[ \int t(s+1) \, dt \][/tex]
Let's focus on integrating these properly.
### Simplify by separable variables:
Separate and integrate as follows:
[tex]\[ \int \frac{1}{s} \, ds = \int \frac{t}{2t^2 + 3t} \, dt + \int \frac{1}{2t^2 + 3t} \, dt \][/tex]
For the simplicity purpose, we need to look at the integrals:
[tex]\[ \int \frac{1}{s} \, ds = \ln|s| + C_1 \][/tex]
Similarly, rewrite the integral on the right-hand side by separating as follows:
[tex]\[ \int \left( \frac{t}{2t^2 + 3t} + \frac{1}{2t^2 + 3t} \right) \, dt \][/tex]
We notice that the first integral can be solved by direct observation and use of logarithm properties:
### Integrate with partial fraction decomposition:
[tex]\[ \int t \left( \frac{1}{t(2t + 3)} \right) \, dt + \int \left( \frac{1}{2t(t + \frac{3}{2})} \right) \, dt \][/tex]
Hence the right-hand integral becomes:
### Substitution on left integral:
Using u-substitution where [tex]\(u = 2t^2+3t \)[/tex]:
[tex]\[ \int \frac t{u} du = \frac{\ln|u|}{2} \][/tex]
Integrate right-hand...
So, combining all:
[tex]\(\ln|s| = \frac{\ln|2t^2+ 3t|}{2} \)[/tex]
Solving the equation, we get
[tex]\(\boxed{s(t)} = e^{\frac{\ln|u|}{2}}}= \sqrt{u}} Boundary conditionsir \(|u | = |2t^2+3t|\)[/tex]
Hence \(\sqrt(u) }= sqrt(2t^3+ 3t
With constant `C`
We appreciate your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Thank you for trusting IDNLearn.com. We’re dedicated to providing accurate answers, so visit us again for more solutions.