Get detailed and reliable answers to your questions with IDNLearn.com. Our platform offers detailed and accurate responses from experts, helping you navigate any topic with confidence.
Sagot :
To determine the volume of water that a large reservoir, modeled as a hemisphere, can hold when its radius is 630 meters, we start with the given volume formula for a sphere:
[tex]\[ V = \frac{4}{3} \pi r^3, \][/tex]
where [tex]\( r \)[/tex] is the radius.
### Step 1: Calculate the volume of a full sphere
We substitute [tex]\( r = 630 \)[/tex] meters into the formula:
[tex]\[ V_{\text{sphere}} = \frac{4}{3} \pi (630)^3. \][/tex]
### Step 2: Simplify the expression
First, compute the value of [tex]\( (630)^3 \)[/tex]:
[tex]\[ 630^3 = 250047000. \][/tex]
Next, multiply this result by [tex]\( \frac{4}{3} \)[/tex] and [tex]\( \pi \)[/tex]:
[tex]\[ V_{\text{sphere}} = \frac{4}{3} \pi \times 250047000. \][/tex]
Using the value [tex]\( \pi \approx 3.141592653589793 \)[/tex], we get:
[tex]\[ V_{\text{sphere}} = \frac{4}{3} \times 3.141592653589793 \times 250047000 \approx 1047394424.34 \ \text{cubic meters}. \][/tex]
### Step 3: Calculate the volume of the hemisphere
Since the reservoir is modeled as a hemisphere (half of a sphere), we need to divide the volume of the sphere by 2:
[tex]\[ V_{\text{hemisphere}} = \frac{V_{\text{sphere}}}{2} \approx \frac{1047394424.34}{2} = 523697212.17 \ \text{cubic meters}. \][/tex]
### Step 4: Express the volume in scientific notation
To express [tex]\( V_{\text{hemisphere}} \)[/tex] in scientific notation, with two decimal places, we write:
[tex]\[ 523697212.17 \approx 5.24 \times 10^8 \ \text{cubic meters}. \][/tex]
### Conclusion
Therefore, the volume of water the reservoir can hold is approximately:
[tex]\[ \boxed{5.24 \times 10^8 \ \text{cubic meters}}. \][/tex]
This completes our calculation for the application problem, providing the volume of the hemisphere-shaped reservoir in scientific notation with two decimal places of accuracy.
[tex]\[ V = \frac{4}{3} \pi r^3, \][/tex]
where [tex]\( r \)[/tex] is the radius.
### Step 1: Calculate the volume of a full sphere
We substitute [tex]\( r = 630 \)[/tex] meters into the formula:
[tex]\[ V_{\text{sphere}} = \frac{4}{3} \pi (630)^3. \][/tex]
### Step 2: Simplify the expression
First, compute the value of [tex]\( (630)^3 \)[/tex]:
[tex]\[ 630^3 = 250047000. \][/tex]
Next, multiply this result by [tex]\( \frac{4}{3} \)[/tex] and [tex]\( \pi \)[/tex]:
[tex]\[ V_{\text{sphere}} = \frac{4}{3} \pi \times 250047000. \][/tex]
Using the value [tex]\( \pi \approx 3.141592653589793 \)[/tex], we get:
[tex]\[ V_{\text{sphere}} = \frac{4}{3} \times 3.141592653589793 \times 250047000 \approx 1047394424.34 \ \text{cubic meters}. \][/tex]
### Step 3: Calculate the volume of the hemisphere
Since the reservoir is modeled as a hemisphere (half of a sphere), we need to divide the volume of the sphere by 2:
[tex]\[ V_{\text{hemisphere}} = \frac{V_{\text{sphere}}}{2} \approx \frac{1047394424.34}{2} = 523697212.17 \ \text{cubic meters}. \][/tex]
### Step 4: Express the volume in scientific notation
To express [tex]\( V_{\text{hemisphere}} \)[/tex] in scientific notation, with two decimal places, we write:
[tex]\[ 523697212.17 \approx 5.24 \times 10^8 \ \text{cubic meters}. \][/tex]
### Conclusion
Therefore, the volume of water the reservoir can hold is approximately:
[tex]\[ \boxed{5.24 \times 10^8 \ \text{cubic meters}}. \][/tex]
This completes our calculation for the application problem, providing the volume of the hemisphere-shaped reservoir in scientific notation with two decimal places of accuracy.
We value your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Discover insightful answers at IDNLearn.com. We appreciate your visit and look forward to assisting you again.