IDNLearn.com is your go-to resource for finding precise and accurate answers. Get accurate answers to your questions from our community of experts who are always ready to provide timely and relevant solutions.
Sagot :
To determine the volume of water that a large reservoir, modeled as a hemisphere, can hold when its radius is 630 meters, we start with the given volume formula for a sphere:
[tex]\[ V = \frac{4}{3} \pi r^3, \][/tex]
where [tex]\( r \)[/tex] is the radius.
### Step 1: Calculate the volume of a full sphere
We substitute [tex]\( r = 630 \)[/tex] meters into the formula:
[tex]\[ V_{\text{sphere}} = \frac{4}{3} \pi (630)^3. \][/tex]
### Step 2: Simplify the expression
First, compute the value of [tex]\( (630)^3 \)[/tex]:
[tex]\[ 630^3 = 250047000. \][/tex]
Next, multiply this result by [tex]\( \frac{4}{3} \)[/tex] and [tex]\( \pi \)[/tex]:
[tex]\[ V_{\text{sphere}} = \frac{4}{3} \pi \times 250047000. \][/tex]
Using the value [tex]\( \pi \approx 3.141592653589793 \)[/tex], we get:
[tex]\[ V_{\text{sphere}} = \frac{4}{3} \times 3.141592653589793 \times 250047000 \approx 1047394424.34 \ \text{cubic meters}. \][/tex]
### Step 3: Calculate the volume of the hemisphere
Since the reservoir is modeled as a hemisphere (half of a sphere), we need to divide the volume of the sphere by 2:
[tex]\[ V_{\text{hemisphere}} = \frac{V_{\text{sphere}}}{2} \approx \frac{1047394424.34}{2} = 523697212.17 \ \text{cubic meters}. \][/tex]
### Step 4: Express the volume in scientific notation
To express [tex]\( V_{\text{hemisphere}} \)[/tex] in scientific notation, with two decimal places, we write:
[tex]\[ 523697212.17 \approx 5.24 \times 10^8 \ \text{cubic meters}. \][/tex]
### Conclusion
Therefore, the volume of water the reservoir can hold is approximately:
[tex]\[ \boxed{5.24 \times 10^8 \ \text{cubic meters}}. \][/tex]
This completes our calculation for the application problem, providing the volume of the hemisphere-shaped reservoir in scientific notation with two decimal places of accuracy.
[tex]\[ V = \frac{4}{3} \pi r^3, \][/tex]
where [tex]\( r \)[/tex] is the radius.
### Step 1: Calculate the volume of a full sphere
We substitute [tex]\( r = 630 \)[/tex] meters into the formula:
[tex]\[ V_{\text{sphere}} = \frac{4}{3} \pi (630)^3. \][/tex]
### Step 2: Simplify the expression
First, compute the value of [tex]\( (630)^3 \)[/tex]:
[tex]\[ 630^3 = 250047000. \][/tex]
Next, multiply this result by [tex]\( \frac{4}{3} \)[/tex] and [tex]\( \pi \)[/tex]:
[tex]\[ V_{\text{sphere}} = \frac{4}{3} \pi \times 250047000. \][/tex]
Using the value [tex]\( \pi \approx 3.141592653589793 \)[/tex], we get:
[tex]\[ V_{\text{sphere}} = \frac{4}{3} \times 3.141592653589793 \times 250047000 \approx 1047394424.34 \ \text{cubic meters}. \][/tex]
### Step 3: Calculate the volume of the hemisphere
Since the reservoir is modeled as a hemisphere (half of a sphere), we need to divide the volume of the sphere by 2:
[tex]\[ V_{\text{hemisphere}} = \frac{V_{\text{sphere}}}{2} \approx \frac{1047394424.34}{2} = 523697212.17 \ \text{cubic meters}. \][/tex]
### Step 4: Express the volume in scientific notation
To express [tex]\( V_{\text{hemisphere}} \)[/tex] in scientific notation, with two decimal places, we write:
[tex]\[ 523697212.17 \approx 5.24 \times 10^8 \ \text{cubic meters}. \][/tex]
### Conclusion
Therefore, the volume of water the reservoir can hold is approximately:
[tex]\[ \boxed{5.24 \times 10^8 \ \text{cubic meters}}. \][/tex]
This completes our calculation for the application problem, providing the volume of the hemisphere-shaped reservoir in scientific notation with two decimal places of accuracy.
We appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. Find the answers you need at IDNLearn.com. Thanks for stopping by, and come back soon for more valuable insights.