Join the IDNLearn.com community and get your questions answered by experts. Ask anything and receive comprehensive, well-informed responses from our dedicated team of experts.
Sagot :
To solve the given system of linear equations using determinants, we can apply Cramer's Rule. Here's the step-by-step process:
Given the system of linear equations:
[tex]\[ \begin{array}{l} -3x + 2y = -9 \\ 4x - 15y = -25 \end{array} \][/tex]
We can rewrite this system in matrix form [tex]\(AX = B\)[/tex], where:
[tex]\[ A = \begin{pmatrix} -3 & 2 \\ 4 & -15 \end{pmatrix}, \quad X = \begin{pmatrix} x \\ y \end{pmatrix}, \quad B = \begin{pmatrix} -9 \\ -25 \end{pmatrix} \][/tex]
According to Cramer's Rule, the solution for [tex]\(x\)[/tex] and [tex]\(y\)[/tex] can be found using the determinants of matrices derived from [tex]\(A\)[/tex] by replacing the respective columns with the column matrix [tex]\(B\)[/tex]. The solution is given as:
[tex]\[ x = \frac{\text{det}(A_x)}{\text{det}(A)}, \quad y = \frac{\text{det}(A_y)}{\text{det}(A)} \][/tex]
Where:
- [tex]\(\text{det}(A)\)[/tex] is the determinant of the matrix [tex]\(A\)[/tex].
- [tex]\(\text{det}(A_x)\)[/tex] is the determinant of the matrix formed by replacing the first column of [tex]\(A\)[/tex] with [tex]\(B\)[/tex].
- [tex]\(\text{det}(A_y)\)[/tex] is the determinant of the matrix formed by replacing the second column of [tex]\(A\)[/tex] with [tex]\(B\)[/tex].
Let's identify each determinant:
1. The determinant of [tex]\(A\)[/tex]:
[tex]\[ A = \begin{pmatrix} -3 & 2 \\ 4 & -15 \end{pmatrix} \][/tex]
2. The determinant of [tex]\(A_x\)[/tex]:
[tex]\[ A_x = \begin{pmatrix} -9 & 2 \\ -25 & -15 \end{pmatrix} \][/tex]
3. The determinant of [tex]\(A_y\)[/tex]:
[tex]\[ A_y = \begin{pmatrix} -3 & -9 \\ 4 & -25 \end{pmatrix} \][/tex]
Given the determinants:
[tex]\[ \text{det}(A) = 37.000000000000014, \quad \text{det}(A_x) = 184.99999999999991, \quad \text{det}(A_y) = 110.99999999999997 \][/tex]
These determinants can be used to solve for [tex]\(x\)[/tex] and [tex]\(y\)[/tex] using Cramer's Rule:
[tex]\[ x = \frac{\text{det}(A_x)}{\text{det}(A)} = \frac{184.99999999999991}{37.000000000000014} \][/tex]
[tex]\[ y = \frac{\text{det}(A_y)}{\text{det}(A)} = \frac{110.99999999999997}{37.000000000000014} \][/tex]
Thus, the determinants used to solve for [tex]\(x\)[/tex] and [tex]\(y\)[/tex] in the system of linear equations are:
- [tex]\(\text{det}(A) = 37.000000000000014\)[/tex]
- [tex]\(\text{det}(A_x) = 184.99999999999991\)[/tex]
- [tex]\(\text{det}(A_y) = 110.99999999999997\)[/tex]
Given the system of linear equations:
[tex]\[ \begin{array}{l} -3x + 2y = -9 \\ 4x - 15y = -25 \end{array} \][/tex]
We can rewrite this system in matrix form [tex]\(AX = B\)[/tex], where:
[tex]\[ A = \begin{pmatrix} -3 & 2 \\ 4 & -15 \end{pmatrix}, \quad X = \begin{pmatrix} x \\ y \end{pmatrix}, \quad B = \begin{pmatrix} -9 \\ -25 \end{pmatrix} \][/tex]
According to Cramer's Rule, the solution for [tex]\(x\)[/tex] and [tex]\(y\)[/tex] can be found using the determinants of matrices derived from [tex]\(A\)[/tex] by replacing the respective columns with the column matrix [tex]\(B\)[/tex]. The solution is given as:
[tex]\[ x = \frac{\text{det}(A_x)}{\text{det}(A)}, \quad y = \frac{\text{det}(A_y)}{\text{det}(A)} \][/tex]
Where:
- [tex]\(\text{det}(A)\)[/tex] is the determinant of the matrix [tex]\(A\)[/tex].
- [tex]\(\text{det}(A_x)\)[/tex] is the determinant of the matrix formed by replacing the first column of [tex]\(A\)[/tex] with [tex]\(B\)[/tex].
- [tex]\(\text{det}(A_y)\)[/tex] is the determinant of the matrix formed by replacing the second column of [tex]\(A\)[/tex] with [tex]\(B\)[/tex].
Let's identify each determinant:
1. The determinant of [tex]\(A\)[/tex]:
[tex]\[ A = \begin{pmatrix} -3 & 2 \\ 4 & -15 \end{pmatrix} \][/tex]
2. The determinant of [tex]\(A_x\)[/tex]:
[tex]\[ A_x = \begin{pmatrix} -9 & 2 \\ -25 & -15 \end{pmatrix} \][/tex]
3. The determinant of [tex]\(A_y\)[/tex]:
[tex]\[ A_y = \begin{pmatrix} -3 & -9 \\ 4 & -25 \end{pmatrix} \][/tex]
Given the determinants:
[tex]\[ \text{det}(A) = 37.000000000000014, \quad \text{det}(A_x) = 184.99999999999991, \quad \text{det}(A_y) = 110.99999999999997 \][/tex]
These determinants can be used to solve for [tex]\(x\)[/tex] and [tex]\(y\)[/tex] using Cramer's Rule:
[tex]\[ x = \frac{\text{det}(A_x)}{\text{det}(A)} = \frac{184.99999999999991}{37.000000000000014} \][/tex]
[tex]\[ y = \frac{\text{det}(A_y)}{\text{det}(A)} = \frac{110.99999999999997}{37.000000000000014} \][/tex]
Thus, the determinants used to solve for [tex]\(x\)[/tex] and [tex]\(y\)[/tex] in the system of linear equations are:
- [tex]\(\text{det}(A) = 37.000000000000014\)[/tex]
- [tex]\(\text{det}(A_x) = 184.99999999999991\)[/tex]
- [tex]\(\text{det}(A_y) = 110.99999999999997\)[/tex]
Thank you for contributing to our discussion. Don't forget to check back for new answers. Keep asking, answering, and sharing useful information. Thank you for choosing IDNLearn.com for your queries. We’re here to provide accurate answers, so visit us again soon.