IDNLearn.com offers expert insights and community wisdom to answer your queries. Join our knowledgeable community and get detailed, reliable answers to all your questions.
Sagot :
Sure! Let's go through the step-by-step process to differentiate the function [tex]\( w = \sin(xy) + y \ln(xz) + z \)[/tex] with respect to [tex]\( t \)[/tex], given that [tex]\( x = e^t \)[/tex], [tex]\( y = t^2 \)[/tex], and [tex]\( z = 1 \)[/tex].
1. Substitute the expressions for [tex]\( x \)[/tex], [tex]\( y \)[/tex], and [tex]\( z \)[/tex]:
Given:
[tex]\[ x = e^t, \quad y = t^2, \quad z = 1 \][/tex]
Substitute these into [tex]\( w \)[/tex]:
[tex]\[ w = \sin(xy) + y \ln(xz) + z = \sin(t^2 e^t) + t^2 \ln(e^t \cdot 1) + 1 \][/tex]
2. Simplify the expression:
[tex]\[ w = \sin(t^2 e^t) + t^2 \ln(e^t) + 1 \][/tex]
Since [tex]\(\ln(e^t) = t\)[/tex], the expression further simplifies:
[tex]\[ w = \sin(t^2 e^t) + t^2 t + 1 = \sin(t^2 e^t) + t^3 + 1 \][/tex]
3. Find the derivative [tex]\( \frac{d w}{d t} \)[/tex]:
Now, we need to differentiate [tex]\( w \)[/tex] with respect to [tex]\( t \)[/tex]:
[tex]\[ \frac{d w}{d t} = \frac{d}{d t} \left( \sin(t^2 e^t) + t^3 + 1 \right) \][/tex]
4. Differentiate each term one by one:
- The derivative of [tex]\( \sin(t^2 e^t) \)[/tex]:
[tex]\[ \frac{d}{d t} \sin(t^2 e^t) \][/tex]
Apply the chain rule. Let [tex]\( u = t^2 e^t \)[/tex], so we need to use the chain rule [tex]\(\frac{d}{d t} \sin(u) = \cos(u) \cdot \frac{d u}{d t} \)[/tex]:
[tex]\[ \frac{d u}{d t} = \frac{d}{d t} (t^2 e^t) \][/tex]
Differentiate [tex]\( t^2 e^t \)[/tex] using the product rule:
[tex]\[ \frac{d}{d t} (t^2 e^t) = 2t e^t + t^2 e^t = e^t (2t + t^2) = t e^t (2 + t) \][/tex]
Thus,
[tex]\[ \frac{d}{d t} \sin(t^2 e^t) = \cos(t^2 e^t) \cdot t e^t (2 + t) \][/tex]
- The derivative of [tex]\( t^3 \)[/tex]:
[tex]\[ \frac{d}{d t} (t^3) = 3t^2 \][/tex]
- The derivative of the constant term [tex]\( 1 \)[/tex]:
[tex]\[ \frac{d}{d t} (1) = 0 \][/tex]
5. Combine all parts:
[tex]\[ \frac{d w}{d t} = \cos(t^2 e^t) \cdot t e^t (2 + t) + 3t^2 \][/tex]
Simplify:
[tex]\[ \frac{d w}{d t} = t e^t (2 + t) \cos(t^2 e^t) + 3t^2 \][/tex]
So the derivative [tex]\( \frac{d w}{d t} \)[/tex] is:
[tex]\[ \boxed{\frac{d w}{d t} = t^2 + 2t + (t^2 e^t + 2t e^t) \cos(t^2 e^t)} \][/tex]
1. Substitute the expressions for [tex]\( x \)[/tex], [tex]\( y \)[/tex], and [tex]\( z \)[/tex]:
Given:
[tex]\[ x = e^t, \quad y = t^2, \quad z = 1 \][/tex]
Substitute these into [tex]\( w \)[/tex]:
[tex]\[ w = \sin(xy) + y \ln(xz) + z = \sin(t^2 e^t) + t^2 \ln(e^t \cdot 1) + 1 \][/tex]
2. Simplify the expression:
[tex]\[ w = \sin(t^2 e^t) + t^2 \ln(e^t) + 1 \][/tex]
Since [tex]\(\ln(e^t) = t\)[/tex], the expression further simplifies:
[tex]\[ w = \sin(t^2 e^t) + t^2 t + 1 = \sin(t^2 e^t) + t^3 + 1 \][/tex]
3. Find the derivative [tex]\( \frac{d w}{d t} \)[/tex]:
Now, we need to differentiate [tex]\( w \)[/tex] with respect to [tex]\( t \)[/tex]:
[tex]\[ \frac{d w}{d t} = \frac{d}{d t} \left( \sin(t^2 e^t) + t^3 + 1 \right) \][/tex]
4. Differentiate each term one by one:
- The derivative of [tex]\( \sin(t^2 e^t) \)[/tex]:
[tex]\[ \frac{d}{d t} \sin(t^2 e^t) \][/tex]
Apply the chain rule. Let [tex]\( u = t^2 e^t \)[/tex], so we need to use the chain rule [tex]\(\frac{d}{d t} \sin(u) = \cos(u) \cdot \frac{d u}{d t} \)[/tex]:
[tex]\[ \frac{d u}{d t} = \frac{d}{d t} (t^2 e^t) \][/tex]
Differentiate [tex]\( t^2 e^t \)[/tex] using the product rule:
[tex]\[ \frac{d}{d t} (t^2 e^t) = 2t e^t + t^2 e^t = e^t (2t + t^2) = t e^t (2 + t) \][/tex]
Thus,
[tex]\[ \frac{d}{d t} \sin(t^2 e^t) = \cos(t^2 e^t) \cdot t e^t (2 + t) \][/tex]
- The derivative of [tex]\( t^3 \)[/tex]:
[tex]\[ \frac{d}{d t} (t^3) = 3t^2 \][/tex]
- The derivative of the constant term [tex]\( 1 \)[/tex]:
[tex]\[ \frac{d}{d t} (1) = 0 \][/tex]
5. Combine all parts:
[tex]\[ \frac{d w}{d t} = \cos(t^2 e^t) \cdot t e^t (2 + t) + 3t^2 \][/tex]
Simplify:
[tex]\[ \frac{d w}{d t} = t e^t (2 + t) \cos(t^2 e^t) + 3t^2 \][/tex]
So the derivative [tex]\( \frac{d w}{d t} \)[/tex] is:
[tex]\[ \boxed{\frac{d w}{d t} = t^2 + 2t + (t^2 e^t + 2t e^t) \cos(t^2 e^t)} \][/tex]
Thank you for joining our conversation. Don't hesitate to return anytime to find answers to your questions. Let's continue sharing knowledge and experiences! IDNLearn.com is committed to your satisfaction. Thank you for visiting, and see you next time for more helpful answers.