IDNLearn.com: Your one-stop platform for getting reliable answers to any question. Get the information you need from our community of experts who provide accurate and thorough answers to all your questions.
Sagot :
Certainly! Let's calculate the time spent in the air for Norma's soccer ball step-by-step.
### Step 1: Identify the Given Information
1. Initial velocity ([tex]\( v \)[/tex]): 10.0 meters per second
2. Angle ([tex]\( \theta \)[/tex]): 30 degrees
3. Gravitational acceleration ([tex]\( g \)[/tex]): 9.81 meters per second squared
4. Vertical displacement ([tex]\( \Delta y \)[/tex]): 0 meters (since the ball returns to ground level)
### Step 2: Convert the Angle to Radians
To use trigonometric functions, we need to convert the angle from degrees to radians.
[tex]\[ \theta_{\text{rad}} = \theta \times \frac{\pi}{180} \][/tex]
[tex]\[ \theta_{\text{rad}} = 30 \times \frac{\pi}{180} = \frac{\pi}{6} \][/tex]
### Step 3: Calculate the Vertical Component of the Initial Velocity
The initial velocity in the vertical direction ([tex]\( v_y \)[/tex]) can be calculated using the sine function:
[tex]\[ v_y = v \sin(\theta_{\text{rad}}) \][/tex]
[tex]\[ v_y = 10 \sin\left(\frac{\pi}{6}\right) \][/tex]
Using the fact that [tex]\(\sin\left(\frac{\pi}{6}\right) = \frac{1}{2}\)[/tex]:
[tex]\[ v_y = 10 \times \frac{1}{2} = 5 \text{ m/s} \][/tex]
### Step 4: Use the Vertical Motion Equation
The vertical displacement ([tex]\( \Delta y \)[/tex]) equation is given by:
[tex]\[ \Delta y = v_y \Delta t + \frac{1}{2} a \Delta t^2 \][/tex]
Since [tex]\(\Delta y\)[/tex] is 0, we set up the quadratic equation:
[tex]\[ 0 = 5\Delta t + \frac{1}{2}(-9.81)(\Delta t^2) \][/tex]
[tex]\[ 0 = 5\Delta t - 4.905(\Delta t^2) \][/tex]
### Step 5: Simplify and Solve the Quadratic Equation
Rewriting the equation in a standard quadratic form:
[tex]\[ 4.905(\Delta t^2) - 5\Delta t = 0 \][/tex]
Factor out [tex]\(\Delta t\)[/tex]:
[tex]\[ \Delta t(4.905\Delta t - 5) = 0 \][/tex]
This gives us two solutions:
[tex]\[ \Delta t = 0 \text{ seconds} \][/tex]
[tex]\[ 4.905\Delta t = 5 \][/tex]
[tex]\[ \Delta t = \frac{5}{4.905} \approx 1.019 \text{ seconds} \][/tex]
Given that [tex]\(\Delta t = 0\)[/tex] represents the initial kick, we disregard it and take the positive time value.
### Step 6: Round the Time to the Nearest Hundredth
The time spent in the air:
[tex]\[ \Delta t \approx 1.019 \text{ seconds} \][/tex]
Rounding to the nearest hundredth:
[tex]\[ \Delta t \approx 1.02 \text{ seconds} \][/tex]
Therefore, the time spent in the air is approximately 1.02 seconds.
### Step 1: Identify the Given Information
1. Initial velocity ([tex]\( v \)[/tex]): 10.0 meters per second
2. Angle ([tex]\( \theta \)[/tex]): 30 degrees
3. Gravitational acceleration ([tex]\( g \)[/tex]): 9.81 meters per second squared
4. Vertical displacement ([tex]\( \Delta y \)[/tex]): 0 meters (since the ball returns to ground level)
### Step 2: Convert the Angle to Radians
To use trigonometric functions, we need to convert the angle from degrees to radians.
[tex]\[ \theta_{\text{rad}} = \theta \times \frac{\pi}{180} \][/tex]
[tex]\[ \theta_{\text{rad}} = 30 \times \frac{\pi}{180} = \frac{\pi}{6} \][/tex]
### Step 3: Calculate the Vertical Component of the Initial Velocity
The initial velocity in the vertical direction ([tex]\( v_y \)[/tex]) can be calculated using the sine function:
[tex]\[ v_y = v \sin(\theta_{\text{rad}}) \][/tex]
[tex]\[ v_y = 10 \sin\left(\frac{\pi}{6}\right) \][/tex]
Using the fact that [tex]\(\sin\left(\frac{\pi}{6}\right) = \frac{1}{2}\)[/tex]:
[tex]\[ v_y = 10 \times \frac{1}{2} = 5 \text{ m/s} \][/tex]
### Step 4: Use the Vertical Motion Equation
The vertical displacement ([tex]\( \Delta y \)[/tex]) equation is given by:
[tex]\[ \Delta y = v_y \Delta t + \frac{1}{2} a \Delta t^2 \][/tex]
Since [tex]\(\Delta y\)[/tex] is 0, we set up the quadratic equation:
[tex]\[ 0 = 5\Delta t + \frac{1}{2}(-9.81)(\Delta t^2) \][/tex]
[tex]\[ 0 = 5\Delta t - 4.905(\Delta t^2) \][/tex]
### Step 5: Simplify and Solve the Quadratic Equation
Rewriting the equation in a standard quadratic form:
[tex]\[ 4.905(\Delta t^2) - 5\Delta t = 0 \][/tex]
Factor out [tex]\(\Delta t\)[/tex]:
[tex]\[ \Delta t(4.905\Delta t - 5) = 0 \][/tex]
This gives us two solutions:
[tex]\[ \Delta t = 0 \text{ seconds} \][/tex]
[tex]\[ 4.905\Delta t = 5 \][/tex]
[tex]\[ \Delta t = \frac{5}{4.905} \approx 1.019 \text{ seconds} \][/tex]
Given that [tex]\(\Delta t = 0\)[/tex] represents the initial kick, we disregard it and take the positive time value.
### Step 6: Round the Time to the Nearest Hundredth
The time spent in the air:
[tex]\[ \Delta t \approx 1.019 \text{ seconds} \][/tex]
Rounding to the nearest hundredth:
[tex]\[ \Delta t \approx 1.02 \text{ seconds} \][/tex]
Therefore, the time spent in the air is approximately 1.02 seconds.
We appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. Thank you for visiting IDNLearn.com. We’re here to provide dependable answers, so visit us again soon.