Get insightful responses to your questions quickly and easily on IDNLearn.com. Ask your questions and get detailed, reliable answers from our community of experienced experts.
Sagot :
To calculate the molar solubility of lead(II) carbonate (PbCO₃) when its solubility product constant ([tex]\( K_{sp} \)[/tex]) is given as [tex]\( 1.5 \times 10^{-15} \)[/tex] at [tex]\( 25^{\circ} \, C \)[/tex], we need to follow these steps:
1. Understand the Dissociation Equation:
Lead(II) carbonate (PbCO₃) dissociates in water according to the following equilibrium equation:
[tex]\[ \text{PbCO}_3 (s) \leftrightharpoons \text{Pb}^{2+} (aq) + \text{CO}_3^{2-} (aq) \][/tex]
2. Define the Molar Solubility:
Let [tex]\( S \)[/tex] represent the molar solubility of PbCO₃. This means at equilibrium, the concentrations of [tex]\( \text{Pb}^{2+} \)[/tex] and [tex]\( \text{CO}_3^{2-} \)[/tex] will both be [tex]\( S \)[/tex].
3. Write the Solubility Product Expression:
The expression for the solubility product [tex]\( K_{sp} \)[/tex] in terms of [tex]\( S \)[/tex] is:
[tex]\[ K_{sp} = [\text{Pb}^{2+}][\text{CO}_3^{2-}] \][/tex]
Substituting [tex]\( S \)[/tex] for the concentrations of [tex]\( \text{Pb}^{2+} \)[/tex] and [tex]\( \text{CO}_3^{2-} \)[/tex]:
[tex]\[ K_{sp} = S \cdot S = S^2 \][/tex]
4. Solve for [tex]\( S \)[/tex]:
Given [tex]\( K_{sp} = 1.5 \times 10^{-15} \)[/tex],
[tex]\[ S^2 = 1.5 \times 10^{-15} \][/tex]
To find [tex]\( S \)[/tex], take the square root of both sides:
[tex]\[ S = \sqrt{1.5 \times 10^{-15}} \][/tex]
5. Calculate the Square Root:
[tex]\[ S \approx 3.872983346207417 \times 10^{-8} \, \text{M} \][/tex]
Therefore, the molar solubility of [tex]\( \text{PbCO}_3 \)[/tex] is approximately [tex]\( 3.9 \times 10^{-8} \, \text{M} \)[/tex].
Out of the given options, the closest and correct value is:
[tex]\[ \boxed{3.9 \times 10^{-8} \, \text{M}} \][/tex]
1. Understand the Dissociation Equation:
Lead(II) carbonate (PbCO₃) dissociates in water according to the following equilibrium equation:
[tex]\[ \text{PbCO}_3 (s) \leftrightharpoons \text{Pb}^{2+} (aq) + \text{CO}_3^{2-} (aq) \][/tex]
2. Define the Molar Solubility:
Let [tex]\( S \)[/tex] represent the molar solubility of PbCO₃. This means at equilibrium, the concentrations of [tex]\( \text{Pb}^{2+} \)[/tex] and [tex]\( \text{CO}_3^{2-} \)[/tex] will both be [tex]\( S \)[/tex].
3. Write the Solubility Product Expression:
The expression for the solubility product [tex]\( K_{sp} \)[/tex] in terms of [tex]\( S \)[/tex] is:
[tex]\[ K_{sp} = [\text{Pb}^{2+}][\text{CO}_3^{2-}] \][/tex]
Substituting [tex]\( S \)[/tex] for the concentrations of [tex]\( \text{Pb}^{2+} \)[/tex] and [tex]\( \text{CO}_3^{2-} \)[/tex]:
[tex]\[ K_{sp} = S \cdot S = S^2 \][/tex]
4. Solve for [tex]\( S \)[/tex]:
Given [tex]\( K_{sp} = 1.5 \times 10^{-15} \)[/tex],
[tex]\[ S^2 = 1.5 \times 10^{-15} \][/tex]
To find [tex]\( S \)[/tex], take the square root of both sides:
[tex]\[ S = \sqrt{1.5 \times 10^{-15}} \][/tex]
5. Calculate the Square Root:
[tex]\[ S \approx 3.872983346207417 \times 10^{-8} \, \text{M} \][/tex]
Therefore, the molar solubility of [tex]\( \text{PbCO}_3 \)[/tex] is approximately [tex]\( 3.9 \times 10^{-8} \, \text{M} \)[/tex].
Out of the given options, the closest and correct value is:
[tex]\[ \boxed{3.9 \times 10^{-8} \, \text{M}} \][/tex]
Thank you for joining our conversation. Don't hesitate to return anytime to find answers to your questions. Let's continue sharing knowledge and experiences! Thank you for visiting IDNLearn.com. For reliable answers to all your questions, please visit us again soon.