Discover a wealth of knowledge and get your questions answered on IDNLearn.com. Ask anything and receive prompt, well-informed answers from our community of knowledgeable experts.
Sagot :
Sure, let's solve this problem step-by-step:
1. Understanding the problem:
We have the solubility product constant, [tex]\(K_{\text{sp}}\)[/tex], for [tex]\( \text{AlPO}_4 \)[/tex], which is [tex]\(9.84 \times 10^{-21}\)[/tex]. We need to determine the molar solubility of [tex]\( \text{AlPO}_4 \)[/tex].
2. Express the dissociation reaction:
The compound [tex]\( \text{AlPO}_4 \)[/tex] dissociates in water as follows:
[tex]\[ \text{AlPO}_4 (s) \leftrightarrow \text{Al}^{3+} (aq) + \text{PO}_4^{3-} (aq) \][/tex]
From this reaction, we can see that for every 1 mole of [tex]\(\text{AlPO}_4\)[/tex] that dissolves, we get 1 mole of [tex]\(\text{Al}^{3+}\)[/tex] and 1 mole of [tex]\(\text{PO}_4^{3-}\)[/tex].
3. Set up the expression for [tex]\(K_{\text{sp}}\)[/tex]:
The solubility product [tex]\(K_{\text{sp}}\)[/tex] is given by:
[tex]\[ K_{\text{sp}} = [\text{Al}^{3+}] \times [\text{PO}_4^{3-}] \][/tex]
4. Define molar solubility:
Let [tex]\( s \)[/tex] be the molar solubility of [tex]\(\text{AlPO}_4\)[/tex]. This means:
- [tex]\([\text{Al}^{3+}] = s\)[/tex]
- [tex]\([\text{PO}_4^{3-}] = s\)[/tex]
Using the dissociation equation, the concentration terms can be replaced with [tex]\( s \)[/tex]:
[tex]\[ K_{\text{sp}} = s \times s = s^2 \][/tex]
5. Solve for the molar solubility [tex]\( s \)[/tex]:
[tex]\[ 9.84 \times 10^{-21} = s^2 \][/tex]
To find [tex]\( s \)[/tex], we take the square root of both sides:
[tex]\[ s = \sqrt{9.84 \times 10^{-21}} \][/tex]
6. Calculate [tex]\( s \)[/tex]:
Upon calculating the square root:
[tex]\[ s \approx 9.92 \times 10^{-11} \, \text{M} \][/tex]
So, the molar solubility of [tex]\( \text{AlPO}_4 \)[/tex] at [tex]\( 25^{\circ}C \)[/tex] is approximately [tex]\( 9.92 \times 10^{-11} \, \text{M} \)[/tex].
Therefore, the correct answer is:
[tex]\[ \boxed{9.92 \times 10^{-11} \, \text{M}} \][/tex]
1. Understanding the problem:
We have the solubility product constant, [tex]\(K_{\text{sp}}\)[/tex], for [tex]\( \text{AlPO}_4 \)[/tex], which is [tex]\(9.84 \times 10^{-21}\)[/tex]. We need to determine the molar solubility of [tex]\( \text{AlPO}_4 \)[/tex].
2. Express the dissociation reaction:
The compound [tex]\( \text{AlPO}_4 \)[/tex] dissociates in water as follows:
[tex]\[ \text{AlPO}_4 (s) \leftrightarrow \text{Al}^{3+} (aq) + \text{PO}_4^{3-} (aq) \][/tex]
From this reaction, we can see that for every 1 mole of [tex]\(\text{AlPO}_4\)[/tex] that dissolves, we get 1 mole of [tex]\(\text{Al}^{3+}\)[/tex] and 1 mole of [tex]\(\text{PO}_4^{3-}\)[/tex].
3. Set up the expression for [tex]\(K_{\text{sp}}\)[/tex]:
The solubility product [tex]\(K_{\text{sp}}\)[/tex] is given by:
[tex]\[ K_{\text{sp}} = [\text{Al}^{3+}] \times [\text{PO}_4^{3-}] \][/tex]
4. Define molar solubility:
Let [tex]\( s \)[/tex] be the molar solubility of [tex]\(\text{AlPO}_4\)[/tex]. This means:
- [tex]\([\text{Al}^{3+}] = s\)[/tex]
- [tex]\([\text{PO}_4^{3-}] = s\)[/tex]
Using the dissociation equation, the concentration terms can be replaced with [tex]\( s \)[/tex]:
[tex]\[ K_{\text{sp}} = s \times s = s^2 \][/tex]
5. Solve for the molar solubility [tex]\( s \)[/tex]:
[tex]\[ 9.84 \times 10^{-21} = s^2 \][/tex]
To find [tex]\( s \)[/tex], we take the square root of both sides:
[tex]\[ s = \sqrt{9.84 \times 10^{-21}} \][/tex]
6. Calculate [tex]\( s \)[/tex]:
Upon calculating the square root:
[tex]\[ s \approx 9.92 \times 10^{-11} \, \text{M} \][/tex]
So, the molar solubility of [tex]\( \text{AlPO}_4 \)[/tex] at [tex]\( 25^{\circ}C \)[/tex] is approximately [tex]\( 9.92 \times 10^{-11} \, \text{M} \)[/tex].
Therefore, the correct answer is:
[tex]\[ \boxed{9.92 \times 10^{-11} \, \text{M}} \][/tex]
We value your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. IDNLearn.com has the answers you need. Thank you for visiting, and we look forward to helping you again soon.