IDNLearn.com provides a seamless experience for finding accurate answers. Discover detailed answers to your questions with our extensive database of expert knowledge.
Sagot :
To solve the matrix equation [tex]\(-M + KX = J\)[/tex], we need to find the matrix [tex]\(X\)[/tex].
Given:
[tex]\[ M = \begin{pmatrix} -4 & 0 \\ 4 & -1 \end{pmatrix}, \quad K = \begin{pmatrix} 1 & 3 \\ 4 & 3 \end{pmatrix}, \quad J = \begin{pmatrix} 13 & 12 \\ 23 & 13 \end{pmatrix} \][/tex]
First, we'll rewrite the equation in a more convenient form. We have:
[tex]\[ -M + KX = J \][/tex]
Rearrange to isolate [tex]\(KX\)[/tex]:
[tex]\[ KX = J + M \][/tex]
Now, calculate [tex]\(J + M\)[/tex], the sum of the matrices [tex]\(J\)[/tex] and [tex]\(M\)[/tex]:
[tex]\[ J + M = \begin{pmatrix} 13 & 12 \\ 23 & 13 \end{pmatrix} + \begin{pmatrix} -4 & 0 \\ 4 & -1 \end{pmatrix} = \begin{pmatrix} 13 + (-4) & 12 + 0 \\ 23 + 4 & 13 + (-1) \end{pmatrix} = \begin{pmatrix} 9 & 12 \\ 27 & 12 \end{pmatrix} \][/tex]
Next, we need to solve for [tex]\(X\)[/tex] by isolating it. To do that, we need the inverse of matrix [tex]\(K\)[/tex]. The inverse [tex]\(K^{-1}\)[/tex] satisfies:
[tex]\[ KK^{-1} = I \][/tex]
The inverse of a 2x2 matrix [tex]\(K = \begin{pmatrix} a & b \\ c & d \end{pmatrix}\)[/tex] is given by:
[tex]\[ K^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \][/tex]
For our matrix [tex]\(K\)[/tex]:
[tex]\[ K = \begin{pmatrix} 1 & 3 \\ 4 & 3 \end{pmatrix} \][/tex]
where [tex]\(a = 1\)[/tex], [tex]\(b = 3\)[/tex], [tex]\(c = 4\)[/tex], and [tex]\(d = 3\)[/tex]. Now calculate the determinant:
[tex]\[ \det(K) = ad - bc = (1)(3) - (3)(4) = 3 - 12 = -9 \][/tex]
Thus, the inverse [tex]\(K^{-1}\)[/tex] is:
[tex]\[ K^{-1} = \frac{1}{-9} \begin{pmatrix} 3 & -3 \\ -4 & 1 \end{pmatrix} = \begin{pmatrix} -0.3333 & 0.3333 \\ 0.4444 & -0.1111 \end{pmatrix} \][/tex]
With [tex]\(K^{-1}\)[/tex] calculated, we can now solve for [tex]\(X\)[/tex]:
[tex]\[ X = K^{-1}(J + M) \][/tex]
Perform the matrix multiplication:
[tex]\[ X = \begin{pmatrix} -0.3333 & 0.3333 \\ 0.4444 & -0.1111 \end{pmatrix} \times \begin{pmatrix} 9 & 12 \\ 27 & 12 \end{pmatrix} = \begin{pmatrix} 6 & 0 \\ 1 & 4 \end{pmatrix} \][/tex]
Thus, the solution for the equation [tex]\(-M + KX = J\)[/tex] is:
[tex]\[ X= \begin{pmatrix} 6 & 0 \\ 1 & 4 \end{pmatrix} \][/tex]
Given:
[tex]\[ M = \begin{pmatrix} -4 & 0 \\ 4 & -1 \end{pmatrix}, \quad K = \begin{pmatrix} 1 & 3 \\ 4 & 3 \end{pmatrix}, \quad J = \begin{pmatrix} 13 & 12 \\ 23 & 13 \end{pmatrix} \][/tex]
First, we'll rewrite the equation in a more convenient form. We have:
[tex]\[ -M + KX = J \][/tex]
Rearrange to isolate [tex]\(KX\)[/tex]:
[tex]\[ KX = J + M \][/tex]
Now, calculate [tex]\(J + M\)[/tex], the sum of the matrices [tex]\(J\)[/tex] and [tex]\(M\)[/tex]:
[tex]\[ J + M = \begin{pmatrix} 13 & 12 \\ 23 & 13 \end{pmatrix} + \begin{pmatrix} -4 & 0 \\ 4 & -1 \end{pmatrix} = \begin{pmatrix} 13 + (-4) & 12 + 0 \\ 23 + 4 & 13 + (-1) \end{pmatrix} = \begin{pmatrix} 9 & 12 \\ 27 & 12 \end{pmatrix} \][/tex]
Next, we need to solve for [tex]\(X\)[/tex] by isolating it. To do that, we need the inverse of matrix [tex]\(K\)[/tex]. The inverse [tex]\(K^{-1}\)[/tex] satisfies:
[tex]\[ KK^{-1} = I \][/tex]
The inverse of a 2x2 matrix [tex]\(K = \begin{pmatrix} a & b \\ c & d \end{pmatrix}\)[/tex] is given by:
[tex]\[ K^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \][/tex]
For our matrix [tex]\(K\)[/tex]:
[tex]\[ K = \begin{pmatrix} 1 & 3 \\ 4 & 3 \end{pmatrix} \][/tex]
where [tex]\(a = 1\)[/tex], [tex]\(b = 3\)[/tex], [tex]\(c = 4\)[/tex], and [tex]\(d = 3\)[/tex]. Now calculate the determinant:
[tex]\[ \det(K) = ad - bc = (1)(3) - (3)(4) = 3 - 12 = -9 \][/tex]
Thus, the inverse [tex]\(K^{-1}\)[/tex] is:
[tex]\[ K^{-1} = \frac{1}{-9} \begin{pmatrix} 3 & -3 \\ -4 & 1 \end{pmatrix} = \begin{pmatrix} -0.3333 & 0.3333 \\ 0.4444 & -0.1111 \end{pmatrix} \][/tex]
With [tex]\(K^{-1}\)[/tex] calculated, we can now solve for [tex]\(X\)[/tex]:
[tex]\[ X = K^{-1}(J + M) \][/tex]
Perform the matrix multiplication:
[tex]\[ X = \begin{pmatrix} -0.3333 & 0.3333 \\ 0.4444 & -0.1111 \end{pmatrix} \times \begin{pmatrix} 9 & 12 \\ 27 & 12 \end{pmatrix} = \begin{pmatrix} 6 & 0 \\ 1 & 4 \end{pmatrix} \][/tex]
Thus, the solution for the equation [tex]\(-M + KX = J\)[/tex] is:
[tex]\[ X= \begin{pmatrix} 6 & 0 \\ 1 & 4 \end{pmatrix} \][/tex]
Your participation means a lot to us. Keep sharing information and solutions. This community grows thanks to the amazing contributions from members like you. For trustworthy and accurate answers, visit IDNLearn.com. Thanks for stopping by, and see you next time for more solutions.