IDNLearn.com: Your one-stop destination for finding reliable answers. Discover in-depth answers from knowledgeable professionals, providing you with the information you need.
Sagot :
Absolutely, let’s break down the steps to solve the problem of calculating the energy released in a fission reaction of a plutonium nucleus.
Step 1: Understand the Problem and Given Data
We are provided with:
- The original mass of the plutonium nucleus, [tex]\( 4.986 \times 10^{-27} \)[/tex] kg.
- The total mass of the resulting fragments after fission, [tex]\( 4.198 \times 10^{-27} \)[/tex] kg.
- The speed of light, [tex]\( c = 3.0 \times 10^8 \)[/tex] m/s (a known constant required for energy calculations).
Step 2: Calculate the Mass Difference
The mass difference, [tex]\( \Delta m \)[/tex], can be found by subtracting the total mass of the fragments from the original mass of the plutonium nucleus:
[tex]\[ \Delta m = \text{original mass} - \text{fragmented mass} \][/tex]
Plugging in the values:
[tex]\[ \Delta m = 4.986 \times 10^{-27} \, \text{kg} - 4.198 \times 10^{-27} \, \text{kg} \][/tex]
[tex]\[ \Delta m = 7.88 \times 10^{-28} \, \text{kg} \][/tex]
(Note that the precise value here is [tex]\( 7.879999999999999 \times 10^{-28} \)[/tex] kg.)
Step 3: Calculate the Energy Released
The energy released during the fission reaction can be calculated using Einstein’s mass-energy equivalence formula [tex]\( E = mc^2 \)[/tex]:
[tex]\[ E = \Delta m \times c^2 \][/tex]
Where:
- [tex]\( \Delta m \)[/tex] is the mass difference calculated above.
- [tex]\( c \)[/tex] is the speed of light.
Using the values:
[tex]\[ E = 7.88 \times 10^{-28} \, \text{kg} \times (3.0 \times 10^8 \, \text{m/s})^2 \][/tex]
Perform the calculations:
[tex]\[ E = 7.88 \times 10^{-28} \, \text{kg} \times 9.0 \times 10^{16} \, \text{m}^2/\text{s}^2 \][/tex]
[tex]\[ E = 7.09 \times 10^{-11} \, \text{J} \][/tex]
(Note that the precise value here is [tex]\( 7.091999999999999 \times 10^{-11} \)[/tex] J.)
Step 4: Conclusion
Thus, the energy released in the fission reaction of the plutonium nucleus is approximately [tex]\( 7.09 \times 10^{-11} \)[/tex] joules.
To summarize the results:
- Original mass: [tex]\( 4.986 \times 10^{-27} \)[/tex] kg
- Fragmented mass: [tex]\( 4.198 \times 10^{-27} \)[/tex] kg
- Mass difference: [tex]\( 7.88 \times 10^{-28} \)[/tex] kg
- Energy released: [tex]\( 7.09 \times 10^{-11} \)[/tex] J
This concludes the step-by-step solution for the given problem.
Step 1: Understand the Problem and Given Data
We are provided with:
- The original mass of the plutonium nucleus, [tex]\( 4.986 \times 10^{-27} \)[/tex] kg.
- The total mass of the resulting fragments after fission, [tex]\( 4.198 \times 10^{-27} \)[/tex] kg.
- The speed of light, [tex]\( c = 3.0 \times 10^8 \)[/tex] m/s (a known constant required for energy calculations).
Step 2: Calculate the Mass Difference
The mass difference, [tex]\( \Delta m \)[/tex], can be found by subtracting the total mass of the fragments from the original mass of the plutonium nucleus:
[tex]\[ \Delta m = \text{original mass} - \text{fragmented mass} \][/tex]
Plugging in the values:
[tex]\[ \Delta m = 4.986 \times 10^{-27} \, \text{kg} - 4.198 \times 10^{-27} \, \text{kg} \][/tex]
[tex]\[ \Delta m = 7.88 \times 10^{-28} \, \text{kg} \][/tex]
(Note that the precise value here is [tex]\( 7.879999999999999 \times 10^{-28} \)[/tex] kg.)
Step 3: Calculate the Energy Released
The energy released during the fission reaction can be calculated using Einstein’s mass-energy equivalence formula [tex]\( E = mc^2 \)[/tex]:
[tex]\[ E = \Delta m \times c^2 \][/tex]
Where:
- [tex]\( \Delta m \)[/tex] is the mass difference calculated above.
- [tex]\( c \)[/tex] is the speed of light.
Using the values:
[tex]\[ E = 7.88 \times 10^{-28} \, \text{kg} \times (3.0 \times 10^8 \, \text{m/s})^2 \][/tex]
Perform the calculations:
[tex]\[ E = 7.88 \times 10^{-28} \, \text{kg} \times 9.0 \times 10^{16} \, \text{m}^2/\text{s}^2 \][/tex]
[tex]\[ E = 7.09 \times 10^{-11} \, \text{J} \][/tex]
(Note that the precise value here is [tex]\( 7.091999999999999 \times 10^{-11} \)[/tex] J.)
Step 4: Conclusion
Thus, the energy released in the fission reaction of the plutonium nucleus is approximately [tex]\( 7.09 \times 10^{-11} \)[/tex] joules.
To summarize the results:
- Original mass: [tex]\( 4.986 \times 10^{-27} \)[/tex] kg
- Fragmented mass: [tex]\( 4.198 \times 10^{-27} \)[/tex] kg
- Mass difference: [tex]\( 7.88 \times 10^{-28} \)[/tex] kg
- Energy released: [tex]\( 7.09 \times 10^{-11} \)[/tex] J
This concludes the step-by-step solution for the given problem.
Thank you for joining our conversation. Don't hesitate to return anytime to find answers to your questions. Let's continue sharing knowledge and experiences! IDNLearn.com provides the best answers to your questions. Thank you for visiting, and come back soon for more helpful information.