Get the information you need with the help of IDNLearn.com's extensive Q&A platform. Find the information you need quickly and easily with our reliable and thorough Q&A platform.
Sagot :
Absolutely, let’s break down the steps to solve the problem of calculating the energy released in a fission reaction of a plutonium nucleus.
Step 1: Understand the Problem and Given Data
We are provided with:
- The original mass of the plutonium nucleus, [tex]\( 4.986 \times 10^{-27} \)[/tex] kg.
- The total mass of the resulting fragments after fission, [tex]\( 4.198 \times 10^{-27} \)[/tex] kg.
- The speed of light, [tex]\( c = 3.0 \times 10^8 \)[/tex] m/s (a known constant required for energy calculations).
Step 2: Calculate the Mass Difference
The mass difference, [tex]\( \Delta m \)[/tex], can be found by subtracting the total mass of the fragments from the original mass of the plutonium nucleus:
[tex]\[ \Delta m = \text{original mass} - \text{fragmented mass} \][/tex]
Plugging in the values:
[tex]\[ \Delta m = 4.986 \times 10^{-27} \, \text{kg} - 4.198 \times 10^{-27} \, \text{kg} \][/tex]
[tex]\[ \Delta m = 7.88 \times 10^{-28} \, \text{kg} \][/tex]
(Note that the precise value here is [tex]\( 7.879999999999999 \times 10^{-28} \)[/tex] kg.)
Step 3: Calculate the Energy Released
The energy released during the fission reaction can be calculated using Einstein’s mass-energy equivalence formula [tex]\( E = mc^2 \)[/tex]:
[tex]\[ E = \Delta m \times c^2 \][/tex]
Where:
- [tex]\( \Delta m \)[/tex] is the mass difference calculated above.
- [tex]\( c \)[/tex] is the speed of light.
Using the values:
[tex]\[ E = 7.88 \times 10^{-28} \, \text{kg} \times (3.0 \times 10^8 \, \text{m/s})^2 \][/tex]
Perform the calculations:
[tex]\[ E = 7.88 \times 10^{-28} \, \text{kg} \times 9.0 \times 10^{16} \, \text{m}^2/\text{s}^2 \][/tex]
[tex]\[ E = 7.09 \times 10^{-11} \, \text{J} \][/tex]
(Note that the precise value here is [tex]\( 7.091999999999999 \times 10^{-11} \)[/tex] J.)
Step 4: Conclusion
Thus, the energy released in the fission reaction of the plutonium nucleus is approximately [tex]\( 7.09 \times 10^{-11} \)[/tex] joules.
To summarize the results:
- Original mass: [tex]\( 4.986 \times 10^{-27} \)[/tex] kg
- Fragmented mass: [tex]\( 4.198 \times 10^{-27} \)[/tex] kg
- Mass difference: [tex]\( 7.88 \times 10^{-28} \)[/tex] kg
- Energy released: [tex]\( 7.09 \times 10^{-11} \)[/tex] J
This concludes the step-by-step solution for the given problem.
Step 1: Understand the Problem and Given Data
We are provided with:
- The original mass of the plutonium nucleus, [tex]\( 4.986 \times 10^{-27} \)[/tex] kg.
- The total mass of the resulting fragments after fission, [tex]\( 4.198 \times 10^{-27} \)[/tex] kg.
- The speed of light, [tex]\( c = 3.0 \times 10^8 \)[/tex] m/s (a known constant required for energy calculations).
Step 2: Calculate the Mass Difference
The mass difference, [tex]\( \Delta m \)[/tex], can be found by subtracting the total mass of the fragments from the original mass of the plutonium nucleus:
[tex]\[ \Delta m = \text{original mass} - \text{fragmented mass} \][/tex]
Plugging in the values:
[tex]\[ \Delta m = 4.986 \times 10^{-27} \, \text{kg} - 4.198 \times 10^{-27} \, \text{kg} \][/tex]
[tex]\[ \Delta m = 7.88 \times 10^{-28} \, \text{kg} \][/tex]
(Note that the precise value here is [tex]\( 7.879999999999999 \times 10^{-28} \)[/tex] kg.)
Step 3: Calculate the Energy Released
The energy released during the fission reaction can be calculated using Einstein’s mass-energy equivalence formula [tex]\( E = mc^2 \)[/tex]:
[tex]\[ E = \Delta m \times c^2 \][/tex]
Where:
- [tex]\( \Delta m \)[/tex] is the mass difference calculated above.
- [tex]\( c \)[/tex] is the speed of light.
Using the values:
[tex]\[ E = 7.88 \times 10^{-28} \, \text{kg} \times (3.0 \times 10^8 \, \text{m/s})^2 \][/tex]
Perform the calculations:
[tex]\[ E = 7.88 \times 10^{-28} \, \text{kg} \times 9.0 \times 10^{16} \, \text{m}^2/\text{s}^2 \][/tex]
[tex]\[ E = 7.09 \times 10^{-11} \, \text{J} \][/tex]
(Note that the precise value here is [tex]\( 7.091999999999999 \times 10^{-11} \)[/tex] J.)
Step 4: Conclusion
Thus, the energy released in the fission reaction of the plutonium nucleus is approximately [tex]\( 7.09 \times 10^{-11} \)[/tex] joules.
To summarize the results:
- Original mass: [tex]\( 4.986 \times 10^{-27} \)[/tex] kg
- Fragmented mass: [tex]\( 4.198 \times 10^{-27} \)[/tex] kg
- Mass difference: [tex]\( 7.88 \times 10^{-28} \)[/tex] kg
- Energy released: [tex]\( 7.09 \times 10^{-11} \)[/tex] J
This concludes the step-by-step solution for the given problem.
Thank you for contributing to our discussion. Don't forget to check back for new answers. Keep asking, answering, and sharing useful information. Accurate answers are just a click away at IDNLearn.com. Thanks for stopping by, and come back for more reliable solutions.