IDNLearn.com provides a collaborative environment for finding and sharing answers. Find the information you need quickly and easily with our comprehensive and accurate Q&A platform.
Sagot :
To find the derivative [tex]\( f'(x) \)[/tex] of the function [tex]\( f(x) = 9 \cdot 5^{g(x)} \)[/tex] at [tex]\( x = 3 \)[/tex], we will follow these steps:
1. Express [tex]\( f(x) \)[/tex] and the given information:
[tex]\[ f(x) = 9 \cdot 5^{g(x)} \][/tex]
Given data:
[tex]\[ g(3) = -2, \quad g'(3) = -1, \quad g''(3) = -9 \][/tex]
2. Differentiate [tex]\( f(x) \)[/tex] using the chain rule:
To find [tex]\( f'(x) \)[/tex], we apply the chain rule. First, express [tex]\( f(x) \)[/tex] as:
[tex]\[ f(x) = 9 \cdot 5^{g(x)} \][/tex]
Taking the derivative with respect to [tex]\( x \)[/tex], we get:
[tex]\[ f'(x) = 9 \cdot \frac{d}{dx} \left( 5^{g(x)} \right) \][/tex]
3. Differentiate [tex]\( 5^{g(x)} \)[/tex] using the chain rule and the exponential function derivative:
Recall that the derivative of [tex]\( a^{h(x)} \)[/tex] with respect to [tex]\( x \)[/tex] is [tex]\( a^{h(x)} \ln(a) h'(x) \)[/tex]. Applying this, we find:
[tex]\[ \frac{d}{dx} \left( 5^{g(x)} \right) = 5^{g(x)} \cdot \ln(5) \cdot g'(x) \][/tex]
Hence:
[tex]\[ f'(x) = 9 \cdot 5^{g(x)} \cdot \ln(5) \cdot g'(x) \][/tex]
4. Evaluate [tex]\( f'(x) \)[/tex] at [tex]\( x = 3 \)[/tex]:
Plug in the given values [tex]\( g(3) = -2 \)[/tex] and [tex]\( g'(3) = -1 \)[/tex]:
[tex]\[ f'(3) = 9 \cdot 5^{g(3)} \cdot \ln(5) \cdot g'(3) \][/tex]
Substitute the known values:
[tex]\[ f'(3) = 9 \cdot 5^{-2} \cdot \ln(5) \cdot (-1) \][/tex]
5. Simplify the expression:
[tex]\[ 5^{-2} = \frac{1}{5^2} = \frac{1}{25} \][/tex]
Therefore:
[tex]\[ f'(3) = 9 \cdot \frac{1}{25} \cdot \ln(5) \cdot (-1) \][/tex]
[tex]\[ f'(3) = -\frac{9}{25} \cdot \ln(5) \][/tex]
6. Approximate the numerical value:
Given the options, we see that the closest numerical value to our simplified expression of [tex]\( f'(3) \)[/tex] is approximately:
[tex]\[ f'(3) \approx -0.5794 \][/tex]
So, the value of [tex]\( f'(3) \)[/tex] is closest to:
[tex]\[ \boxed{-0.5794} \][/tex]
1. Express [tex]\( f(x) \)[/tex] and the given information:
[tex]\[ f(x) = 9 \cdot 5^{g(x)} \][/tex]
Given data:
[tex]\[ g(3) = -2, \quad g'(3) = -1, \quad g''(3) = -9 \][/tex]
2. Differentiate [tex]\( f(x) \)[/tex] using the chain rule:
To find [tex]\( f'(x) \)[/tex], we apply the chain rule. First, express [tex]\( f(x) \)[/tex] as:
[tex]\[ f(x) = 9 \cdot 5^{g(x)} \][/tex]
Taking the derivative with respect to [tex]\( x \)[/tex], we get:
[tex]\[ f'(x) = 9 \cdot \frac{d}{dx} \left( 5^{g(x)} \right) \][/tex]
3. Differentiate [tex]\( 5^{g(x)} \)[/tex] using the chain rule and the exponential function derivative:
Recall that the derivative of [tex]\( a^{h(x)} \)[/tex] with respect to [tex]\( x \)[/tex] is [tex]\( a^{h(x)} \ln(a) h'(x) \)[/tex]. Applying this, we find:
[tex]\[ \frac{d}{dx} \left( 5^{g(x)} \right) = 5^{g(x)} \cdot \ln(5) \cdot g'(x) \][/tex]
Hence:
[tex]\[ f'(x) = 9 \cdot 5^{g(x)} \cdot \ln(5) \cdot g'(x) \][/tex]
4. Evaluate [tex]\( f'(x) \)[/tex] at [tex]\( x = 3 \)[/tex]:
Plug in the given values [tex]\( g(3) = -2 \)[/tex] and [tex]\( g'(3) = -1 \)[/tex]:
[tex]\[ f'(3) = 9 \cdot 5^{g(3)} \cdot \ln(5) \cdot g'(3) \][/tex]
Substitute the known values:
[tex]\[ f'(3) = 9 \cdot 5^{-2} \cdot \ln(5) \cdot (-1) \][/tex]
5. Simplify the expression:
[tex]\[ 5^{-2} = \frac{1}{5^2} = \frac{1}{25} \][/tex]
Therefore:
[tex]\[ f'(3) = 9 \cdot \frac{1}{25} \cdot \ln(5) \cdot (-1) \][/tex]
[tex]\[ f'(3) = -\frac{9}{25} \cdot \ln(5) \][/tex]
6. Approximate the numerical value:
Given the options, we see that the closest numerical value to our simplified expression of [tex]\( f'(3) \)[/tex] is approximately:
[tex]\[ f'(3) \approx -0.5794 \][/tex]
So, the value of [tex]\( f'(3) \)[/tex] is closest to:
[tex]\[ \boxed{-0.5794} \][/tex]
We appreciate your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Your search for solutions ends here at IDNLearn.com. Thank you for visiting, and come back soon for more helpful information.