IDNLearn.com provides a user-friendly platform for finding and sharing knowledge. Discover in-depth answers to your questions from our community of experienced professionals.
Sagot :
Let's start by breaking down the problem and solving each part step-by-step.
Given:
- Initial concentration, [tex]\( [A]_0 = 5.0 \, \text{M} \)[/tex]
- Rate constant, [tex]\( k = 1.0 \times 10^{-2} \)[/tex]
- Time elapsed, [tex]\( t = 30.0 \, \text{s} \)[/tex]
### a) Zero Order Reaction
For a zero order reaction, the rate law is given by:
[tex]\[ [A] = [A]_0 - kt \][/tex]
i. To find the concentration of [tex]\( A \)[/tex] after 30.0 seconds:
[tex]\[ [A] = 5.0 \, \text{M} - (1.0 \times 10^{-2}) \times 30.0 \][/tex]
[tex]\[ [A] = 5.0 \, \text{M} - 0.3 \, \text{M} \][/tex]
[tex]\[ [A] = 4.7 \, \text{M} \][/tex]
ii. The half-life for a zero order reaction is:
[tex]\[ t_{1/2} = \frac{[A]_0}{2k} \][/tex]
[tex]\[ t_{1/2} = \frac{5.0 \, \text{M}}{2 \times 1.0 \times 10^{-2}} \][/tex]
[tex]\[ t_{1/2} = \frac{5.0}{0.02} \][/tex]
[tex]\[ t_{1/2} = 250.0 \, \text{s} \][/tex]
### b) First Order Reaction
For a first order reaction, the rate law is given by:
[tex]\[ [A] = [A]_0 e^{-kt} \][/tex]
i. To find the concentration of [tex]\( A \)[/tex] after 30.0 seconds:
[tex]\[ [A] = 5.0 \, \text{M} \times e^{-(1.0 \times 10^{-2}) \times 30.0} \][/tex]
[tex]\[ [A] = 5.0 \, \text{M} \times e^{-0.3} \][/tex]
[tex]\[ [A] \approx 5.0 \, \text{M} \times 0.7408182 \][/tex]
[tex]\[ [A] \approx 3.704 \, \text{M} \][/tex]
ii. The half-life for a first order reaction is:
[tex]\[ t_{1/2} = \frac{\ln 2}{k} \][/tex]
[tex]\[ t_{1/2} = \frac{0.693}{1.0 \times 10^{-2}} \][/tex]
[tex]\[ t_{1/2} \approx 69.3147 \, \text{s} \][/tex]
### c) Second Order Reaction
For a second order reaction, the rate law is given by:
[tex]\[ \frac{1}{[A]} = \frac{1}{[A]_0} + kt \][/tex]
i. To find the concentration of [tex]\( A \)[/tex] after 30.0 seconds:
[tex]\[ \frac{1}{[A]} = \frac{1}{5.0 \, \text{M}} + (1.0 \times 10^{-2}) \times 30.0 \][/tex]
[tex]\[ \frac{1}{[A]} = 0.2 + 0.3 \][/tex]
[tex]\[ \frac{1}{[A]} = 0.5 \][/tex]
[tex]\[ [A] = \frac{1}{0.5} \][/tex]
[tex]\[ [A] = 2.0 \, \text{M} \][/tex]
ii. The half-life for a second order reaction is:
[tex]\[ t_{1/2} = \frac{1}{k[A]_0} \][/tex]
[tex]\[ t_{1/2} = \frac{1}{(1.0 \times 10^{-2}) \times 5.0} \][/tex]
[tex]\[ t_{1/2} = \frac{1}{0.05} \][/tex]
[tex]\[ t_{1/2} = 20.0 \, \text{s} \][/tex]
In summary:
- a) Zero order:
- Concentration after 30s: [tex]\( [A] = 4.7 \, \text{M} \)[/tex]
- Half-life: [tex]\( t_{1/2} = 250.0 \, \text{s} \)[/tex]
- b) First order:
- Concentration after 30s: [tex]\( [A] \approx 3.704 \, \text{M} \)[/tex]
- Half-life: [tex]\( t_{1/2} \approx 69.3147 \, \text{s} \)[/tex]
- c) Second order:
- Concentration after 30s: [tex]\( [A] = 2.0 \, \text{M} \)[/tex]
- Half-life: [tex]\( t_{1/2} = 20.0 \, \text{s} \)[/tex]
Given:
- Initial concentration, [tex]\( [A]_0 = 5.0 \, \text{M} \)[/tex]
- Rate constant, [tex]\( k = 1.0 \times 10^{-2} \)[/tex]
- Time elapsed, [tex]\( t = 30.0 \, \text{s} \)[/tex]
### a) Zero Order Reaction
For a zero order reaction, the rate law is given by:
[tex]\[ [A] = [A]_0 - kt \][/tex]
i. To find the concentration of [tex]\( A \)[/tex] after 30.0 seconds:
[tex]\[ [A] = 5.0 \, \text{M} - (1.0 \times 10^{-2}) \times 30.0 \][/tex]
[tex]\[ [A] = 5.0 \, \text{M} - 0.3 \, \text{M} \][/tex]
[tex]\[ [A] = 4.7 \, \text{M} \][/tex]
ii. The half-life for a zero order reaction is:
[tex]\[ t_{1/2} = \frac{[A]_0}{2k} \][/tex]
[tex]\[ t_{1/2} = \frac{5.0 \, \text{M}}{2 \times 1.0 \times 10^{-2}} \][/tex]
[tex]\[ t_{1/2} = \frac{5.0}{0.02} \][/tex]
[tex]\[ t_{1/2} = 250.0 \, \text{s} \][/tex]
### b) First Order Reaction
For a first order reaction, the rate law is given by:
[tex]\[ [A] = [A]_0 e^{-kt} \][/tex]
i. To find the concentration of [tex]\( A \)[/tex] after 30.0 seconds:
[tex]\[ [A] = 5.0 \, \text{M} \times e^{-(1.0 \times 10^{-2}) \times 30.0} \][/tex]
[tex]\[ [A] = 5.0 \, \text{M} \times e^{-0.3} \][/tex]
[tex]\[ [A] \approx 5.0 \, \text{M} \times 0.7408182 \][/tex]
[tex]\[ [A] \approx 3.704 \, \text{M} \][/tex]
ii. The half-life for a first order reaction is:
[tex]\[ t_{1/2} = \frac{\ln 2}{k} \][/tex]
[tex]\[ t_{1/2} = \frac{0.693}{1.0 \times 10^{-2}} \][/tex]
[tex]\[ t_{1/2} \approx 69.3147 \, \text{s} \][/tex]
### c) Second Order Reaction
For a second order reaction, the rate law is given by:
[tex]\[ \frac{1}{[A]} = \frac{1}{[A]_0} + kt \][/tex]
i. To find the concentration of [tex]\( A \)[/tex] after 30.0 seconds:
[tex]\[ \frac{1}{[A]} = \frac{1}{5.0 \, \text{M}} + (1.0 \times 10^{-2}) \times 30.0 \][/tex]
[tex]\[ \frac{1}{[A]} = 0.2 + 0.3 \][/tex]
[tex]\[ \frac{1}{[A]} = 0.5 \][/tex]
[tex]\[ [A] = \frac{1}{0.5} \][/tex]
[tex]\[ [A] = 2.0 \, \text{M} \][/tex]
ii. The half-life for a second order reaction is:
[tex]\[ t_{1/2} = \frac{1}{k[A]_0} \][/tex]
[tex]\[ t_{1/2} = \frac{1}{(1.0 \times 10^{-2}) \times 5.0} \][/tex]
[tex]\[ t_{1/2} = \frac{1}{0.05} \][/tex]
[tex]\[ t_{1/2} = 20.0 \, \text{s} \][/tex]
In summary:
- a) Zero order:
- Concentration after 30s: [tex]\( [A] = 4.7 \, \text{M} \)[/tex]
- Half-life: [tex]\( t_{1/2} = 250.0 \, \text{s} \)[/tex]
- b) First order:
- Concentration after 30s: [tex]\( [A] \approx 3.704 \, \text{M} \)[/tex]
- Half-life: [tex]\( t_{1/2} \approx 69.3147 \, \text{s} \)[/tex]
- c) Second order:
- Concentration after 30s: [tex]\( [A] = 2.0 \, \text{M} \)[/tex]
- Half-life: [tex]\( t_{1/2} = 20.0 \, \text{s} \)[/tex]
Thank you for being part of this discussion. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Your search for answers ends at IDNLearn.com. Thanks for visiting, and we look forward to helping you again soon.