IDNLearn.com: Your go-to resource for finding precise and accurate answers. Discover prompt and accurate responses from our experts, ensuring you get the information you need quickly.
Sagot :
To evaluate the limit [tex]\(\lim _{x \rightarrow 1} \frac{x-\sqrt{2-x^2}}{2x-\sqrt{2+2x^2}}\)[/tex], we need to carefully examine the function and determine its behavior as [tex]\( x \)[/tex] approaches 1. Here is a step-by-step approach to solve this problem:
1. Substitute [tex]\( x = 1 \)[/tex] into the function:
[tex]\[ \frac{1-\sqrt{2-1^2}}{2\cdot1-\sqrt{2+2\cdot1^2}} = \frac{1-\sqrt{2-1}}{2-\sqrt{2+2}} = \frac{1-\sqrt{1}}{2-\sqrt{4}} \][/tex]
Simplifying the square roots, we get:
[tex]\[ \frac{1-1}{2-2} = \frac{0}{0} \][/tex]
This gives us the indeterminate form [tex]\( \frac{0}{0} \)[/tex].
2. Apply L'Hôpital's Rule:
Since we have an indeterminate form of [tex]\( \frac{0}{0} \)[/tex], we can use L'Hôpital's Rule, which states that for limits of the form [tex]\( \frac{0}{0} \)[/tex] or [tex]\( \frac{\infty}{\infty} \)[/tex], the limit of the ratio of functions is the limit of the ratio of their derivatives. L'Hôpital's Rule means we need to differentiate the numerator and the denominator separately and then take the limit again.
Let's differentiate the numerator [tex]\( x - \sqrt{2 - x^2} \)[/tex] and the denominator [tex]\( 2x - \sqrt{2 + 2x^2} \)[/tex]:
- Numerator: Differentiate [tex]\( x - \sqrt{2 - x^2} \)[/tex]
[tex]\[ \text{Let } y = x - \sqrt{2 - x^2} \Rightarrow \frac{dy}{dx} = 1 - \frac{1}{2\sqrt{2 - x^2}} \cdot (-2x) \][/tex]
Simplify the derivative in the numerator:
[tex]\[ \frac{dy}{dx} = 1 + \frac{x}{\sqrt{2 - x^2}} \][/tex]
- Denominator: Differentiate [tex]\( 2x - \sqrt{2 + 2x^2} \)[/tex]
[tex]\[ \text{Let } z = 2x - \sqrt{2 + 2x^2} \Rightarrow \frac{dz}{dx} = 2 - \frac{1}{2\sqrt{2 + 2x^2}} \cdot (4x) \][/tex]
Simplify the derivative in the denominator:
[tex]\[ \frac{dz}{dx} = 2 - \frac{2x}{\sqrt{2 + 2x^2}} \][/tex]
3. Substitute [tex]\( x = 1 \)[/tex] into the derivatives:
[tex]\[ \lim_{x \to 1} \frac{\frac{dy}{dx}}{\frac{dz}{dx}} = \lim_{x \to 1} \frac{1 + \frac{x}{\sqrt{2 - x^2}}}{2 - \frac{2x}{\sqrt{2 + 2x^2}}} \][/tex]
Substitute [tex]\( x = 1 \)[/tex]:
[tex]\[ \frac{1 + \frac{1}{\sqrt{2 - 1}}}{2 - \frac{2 \cdot 1}{\sqrt{2 + 2 \cdot 1^2}}} = \frac{1 + \frac{1}{\sqrt{1}}}{2 - \frac{2}{\sqrt{4}}} = \frac{1 + 1}{2 - 1} = \frac{2}{1} = 2 \][/tex]
The limit evaluates to 2. Hence, the solution is:
[tex]\[ \lim _{x \rightarrow 1} \frac{x-\sqrt{2-x^2}}{2 x-\sqrt{2+2 x^2}} = 2 \][/tex]
1. Substitute [tex]\( x = 1 \)[/tex] into the function:
[tex]\[ \frac{1-\sqrt{2-1^2}}{2\cdot1-\sqrt{2+2\cdot1^2}} = \frac{1-\sqrt{2-1}}{2-\sqrt{2+2}} = \frac{1-\sqrt{1}}{2-\sqrt{4}} \][/tex]
Simplifying the square roots, we get:
[tex]\[ \frac{1-1}{2-2} = \frac{0}{0} \][/tex]
This gives us the indeterminate form [tex]\( \frac{0}{0} \)[/tex].
2. Apply L'Hôpital's Rule:
Since we have an indeterminate form of [tex]\( \frac{0}{0} \)[/tex], we can use L'Hôpital's Rule, which states that for limits of the form [tex]\( \frac{0}{0} \)[/tex] or [tex]\( \frac{\infty}{\infty} \)[/tex], the limit of the ratio of functions is the limit of the ratio of their derivatives. L'Hôpital's Rule means we need to differentiate the numerator and the denominator separately and then take the limit again.
Let's differentiate the numerator [tex]\( x - \sqrt{2 - x^2} \)[/tex] and the denominator [tex]\( 2x - \sqrt{2 + 2x^2} \)[/tex]:
- Numerator: Differentiate [tex]\( x - \sqrt{2 - x^2} \)[/tex]
[tex]\[ \text{Let } y = x - \sqrt{2 - x^2} \Rightarrow \frac{dy}{dx} = 1 - \frac{1}{2\sqrt{2 - x^2}} \cdot (-2x) \][/tex]
Simplify the derivative in the numerator:
[tex]\[ \frac{dy}{dx} = 1 + \frac{x}{\sqrt{2 - x^2}} \][/tex]
- Denominator: Differentiate [tex]\( 2x - \sqrt{2 + 2x^2} \)[/tex]
[tex]\[ \text{Let } z = 2x - \sqrt{2 + 2x^2} \Rightarrow \frac{dz}{dx} = 2 - \frac{1}{2\sqrt{2 + 2x^2}} \cdot (4x) \][/tex]
Simplify the derivative in the denominator:
[tex]\[ \frac{dz}{dx} = 2 - \frac{2x}{\sqrt{2 + 2x^2}} \][/tex]
3. Substitute [tex]\( x = 1 \)[/tex] into the derivatives:
[tex]\[ \lim_{x \to 1} \frac{\frac{dy}{dx}}{\frac{dz}{dx}} = \lim_{x \to 1} \frac{1 + \frac{x}{\sqrt{2 - x^2}}}{2 - \frac{2x}{\sqrt{2 + 2x^2}}} \][/tex]
Substitute [tex]\( x = 1 \)[/tex]:
[tex]\[ \frac{1 + \frac{1}{\sqrt{2 - 1}}}{2 - \frac{2 \cdot 1}{\sqrt{2 + 2 \cdot 1^2}}} = \frac{1 + \frac{1}{\sqrt{1}}}{2 - \frac{2}{\sqrt{4}}} = \frac{1 + 1}{2 - 1} = \frac{2}{1} = 2 \][/tex]
The limit evaluates to 2. Hence, the solution is:
[tex]\[ \lim _{x \rightarrow 1} \frac{x-\sqrt{2-x^2}}{2 x-\sqrt{2+2 x^2}} = 2 \][/tex]
Your participation is crucial to us. Keep sharing your knowledge and experiences. Let's create a learning environment that is both enjoyable and beneficial. Your questions deserve accurate answers. Thank you for visiting IDNLearn.com, and see you again for more solutions.