Engage with knowledgeable experts and get accurate answers on IDNLearn.com. Our experts are available to provide in-depth and trustworthy answers to any questions you may have.
Sagot :
To determine the value of [tex]\( x \)[/tex] that makes the two matrices inverses of each other for the given matrices:
[tex]\[ A = \begin{bmatrix} 5 & 2 \\ 2 & 1 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 1 & -2 \\ x & 5 \end{bmatrix}, \][/tex]
we need to find [tex]\( x \)[/tex] such that the product of the matrices [tex]\( A \)[/tex] and [tex]\( B \)[/tex] is the identity matrix [tex]\( I \)[/tex]:
[tex]\[ A \cdot B = I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}. \][/tex]
Let's multiply the matrices [tex]\( A \)[/tex] and [tex]\( B \)[/tex].
[tex]\[ A \cdot B = \begin{bmatrix} 5 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ x & 5 \end{bmatrix} \][/tex]
Perform the matrix multiplication:
[tex]\[ A \cdot B = \begin{bmatrix} (5 \cdot 1 + 2 \cdot x) & (5 \cdot -2 + 2 \cdot 5) \\ (2 \cdot 1 + 1 \cdot x) & (2 \cdot -2 + 1 \cdot 5) \end{bmatrix} = \begin{bmatrix} 5 + 2x & -10 + 10 \\ 2 + x & -4 + 5 \end{bmatrix} = \begin{bmatrix} 5 + 2x & 0 \\ 2 + x & 1 \end{bmatrix} \][/tex]
Now, we set the product equal to the identity matrix and solve for [tex]\( x \)[/tex]:
[tex]\[ \begin{bmatrix} 5 + 2x & 0 \\ 2 + x & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \][/tex]
From the matrix equality, we get the following system of equations:
[tex]\[ 5 + 2x = 1 \quad \text{(1)} \][/tex]
[tex]\[ 2 + x = 0 \quad \text{(2)} \][/tex]
First, solve equation (2) for [tex]\( x \)[/tex]:
[tex]\[ 2 + x = 0 \][/tex]
[tex]\[ x = -2 \][/tex]
Therefore, the value of [tex]\( x \)[/tex] that makes the two matrices inverses of each other is [tex]\( x = -2 \)[/tex].
To verify, substitute [tex]\( x = -2 \)[/tex] back into [tex]\( B \)[/tex] and check that [tex]\( A \cdot B = I \)[/tex]:
[tex]\[ B = \begin{bmatrix} 1 & -2 \\ -2 & 5 \end{bmatrix} \][/tex]
[tex]\[ A \cdot B = \begin{bmatrix} 5 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ -2 & 5 \end{bmatrix} = \begin{bmatrix} 5 \cdot 1 + 2 \cdot (-2) & 5 \cdot -2 + 2 \cdot 5 \\ 2 \cdot 1 + 1 \cdot (-2) & 2 \cdot -2 + 1 \cdot 5 \end{bmatrix} = \begin{bmatrix} 5 - 4 & -10 + 10 \\ 2 - 2 & -4 + 5 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I \][/tex]
Thus, when [tex]\( x = -2 \)[/tex], the matrices [tex]\( A \)[/tex] and [tex]\( B \)[/tex] are indeed inverses of each other.
[tex]\[ A = \begin{bmatrix} 5 & 2 \\ 2 & 1 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 1 & -2 \\ x & 5 \end{bmatrix}, \][/tex]
we need to find [tex]\( x \)[/tex] such that the product of the matrices [tex]\( A \)[/tex] and [tex]\( B \)[/tex] is the identity matrix [tex]\( I \)[/tex]:
[tex]\[ A \cdot B = I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}. \][/tex]
Let's multiply the matrices [tex]\( A \)[/tex] and [tex]\( B \)[/tex].
[tex]\[ A \cdot B = \begin{bmatrix} 5 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ x & 5 \end{bmatrix} \][/tex]
Perform the matrix multiplication:
[tex]\[ A \cdot B = \begin{bmatrix} (5 \cdot 1 + 2 \cdot x) & (5 \cdot -2 + 2 \cdot 5) \\ (2 \cdot 1 + 1 \cdot x) & (2 \cdot -2 + 1 \cdot 5) \end{bmatrix} = \begin{bmatrix} 5 + 2x & -10 + 10 \\ 2 + x & -4 + 5 \end{bmatrix} = \begin{bmatrix} 5 + 2x & 0 \\ 2 + x & 1 \end{bmatrix} \][/tex]
Now, we set the product equal to the identity matrix and solve for [tex]\( x \)[/tex]:
[tex]\[ \begin{bmatrix} 5 + 2x & 0 \\ 2 + x & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \][/tex]
From the matrix equality, we get the following system of equations:
[tex]\[ 5 + 2x = 1 \quad \text{(1)} \][/tex]
[tex]\[ 2 + x = 0 \quad \text{(2)} \][/tex]
First, solve equation (2) for [tex]\( x \)[/tex]:
[tex]\[ 2 + x = 0 \][/tex]
[tex]\[ x = -2 \][/tex]
Therefore, the value of [tex]\( x \)[/tex] that makes the two matrices inverses of each other is [tex]\( x = -2 \)[/tex].
To verify, substitute [tex]\( x = -2 \)[/tex] back into [tex]\( B \)[/tex] and check that [tex]\( A \cdot B = I \)[/tex]:
[tex]\[ B = \begin{bmatrix} 1 & -2 \\ -2 & 5 \end{bmatrix} \][/tex]
[tex]\[ A \cdot B = \begin{bmatrix} 5 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ -2 & 5 \end{bmatrix} = \begin{bmatrix} 5 \cdot 1 + 2 \cdot (-2) & 5 \cdot -2 + 2 \cdot 5 \\ 2 \cdot 1 + 1 \cdot (-2) & 2 \cdot -2 + 1 \cdot 5 \end{bmatrix} = \begin{bmatrix} 5 - 4 & -10 + 10 \\ 2 - 2 & -4 + 5 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I \][/tex]
Thus, when [tex]\( x = -2 \)[/tex], the matrices [tex]\( A \)[/tex] and [tex]\( B \)[/tex] are indeed inverses of each other.
We appreciate your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. IDNLearn.com has the answers you need. Thank you for visiting, and we look forward to helping you again soon.