Get comprehensive solutions to your problems with IDNLearn.com. Join our Q&A platform to receive prompt and accurate responses from knowledgeable professionals in various fields.
Sagot :
To find the gravitational force between two objects, you can use Newton's law of universal gravitation. The formula is:
[tex]\[ F = G \frac{m_1 m_2}{r^2} \][/tex]
where:
- [tex]\( F \)[/tex] is the gravitational force between the two objects,
- [tex]\( G \)[/tex] is the gravitational constant, [tex]\( 6.67 \times 10^{-11} \, \text{N} \cdot (\text{m}^2 / \text{kg}^2) \)[/tex],
- [tex]\( m_1 \)[/tex] and [tex]\( m_2 \)[/tex] are the masses of the two objects (in kilograms),
- [tex]\( r \)[/tex] is the distance between the centers of the two objects (in meters).
Given:
- The mass of each bowling ball, [tex]\( m_1 = m_2 = 8 \, \text{kg} \)[/tex],
- The distance between the two bowling balls, [tex]\( r = 2 \, \text{m} \)[/tex].
Now plug these values into the formula:
[tex]\[ F = \left( 6.67 \times 10^{-11} \, \text{N} \cdot \left(\text{m}^2 / \text{kg}^2\right) \right) \frac{8 \, \text{kg} \times 8 \, \text{kg}}{(2 \, \text{m})^2} \][/tex]
First, calculate [tex]\( (2 \, \text{m})^2 \)[/tex]:
[tex]\[ (2 \, \text{m})^2 = 4 \, \text{m}^2 \][/tex]
Next, calculate [tex]\( 8 \, \text{kg} \times 8 \, \text{kg} \)[/tex]:
[tex]\[ 8 \, \text{kg} \times 8 \, \text{kg} = 64 \, \text{kg}^2 \][/tex]
Now the formula looks like this:
[tex]\[ F = \left( 6.67 \times 10^{-11} \, \text{N} \cdot (\text{m}^2 / \text{kg}^2) \right) \frac{64 \, \text{kg}^2}{4 \, \text{m}^2} \][/tex]
Divide [tex]\( 64 \, \text{kg}^2 \)[/tex] by [tex]\( 4 \, \text{m}^2 \)[/tex]:
[tex]\[ \frac{64 \, \text{kg}^2}{4 \, \text{m}^2} = 16 \, \text{kg}^2 / \text{m}^2 \][/tex]
Now multiply:
[tex]\[ F = 6.67 \times 10^{-11} \, \text{N} \cdot (\text{m}^2 / \text{kg}^2) \times 16 \, \text{kg}^2 / \text{m}^2 \][/tex]
[tex]\[ F = 6.67 \times 10^{-11} \times 16 \][/tex]
Calculate [tex]\( 6.67 \times 16 \)[/tex]:
[tex]\[ 6.67 \times 16 = 106.72 \][/tex]
Now add the exponent:
[tex]\[ 106.72 \times 10^{-11} = 1.0672 \times 10^{-9} \, \text{N} \][/tex]
So, the gravitational force between the two bowling balls is:
[tex]\[ F = 1.0672 \times 10^{-9} \, \text{N} \][/tex]
Referring to the given options:
- A. [tex]\( 2.14 \times 10^{-9} \, \text{N} \)[/tex]
- B. [tex]\( 3.21 \times 10^{-8} \, \text{N} \)[/tex]
- C. [tex]\( 2.68 \times 10^{-10} \, \text{N} \)[/tex]
- D. [tex]\( 1.07 \times 10^{-9} \, \text{N} \)[/tex]
The closest and correct answer is:
D. [tex]\( 1.07 \times 10^{-9} \, \text{N} \)[/tex]
[tex]\[ F = G \frac{m_1 m_2}{r^2} \][/tex]
where:
- [tex]\( F \)[/tex] is the gravitational force between the two objects,
- [tex]\( G \)[/tex] is the gravitational constant, [tex]\( 6.67 \times 10^{-11} \, \text{N} \cdot (\text{m}^2 / \text{kg}^2) \)[/tex],
- [tex]\( m_1 \)[/tex] and [tex]\( m_2 \)[/tex] are the masses of the two objects (in kilograms),
- [tex]\( r \)[/tex] is the distance between the centers of the two objects (in meters).
Given:
- The mass of each bowling ball, [tex]\( m_1 = m_2 = 8 \, \text{kg} \)[/tex],
- The distance between the two bowling balls, [tex]\( r = 2 \, \text{m} \)[/tex].
Now plug these values into the formula:
[tex]\[ F = \left( 6.67 \times 10^{-11} \, \text{N} \cdot \left(\text{m}^2 / \text{kg}^2\right) \right) \frac{8 \, \text{kg} \times 8 \, \text{kg}}{(2 \, \text{m})^2} \][/tex]
First, calculate [tex]\( (2 \, \text{m})^2 \)[/tex]:
[tex]\[ (2 \, \text{m})^2 = 4 \, \text{m}^2 \][/tex]
Next, calculate [tex]\( 8 \, \text{kg} \times 8 \, \text{kg} \)[/tex]:
[tex]\[ 8 \, \text{kg} \times 8 \, \text{kg} = 64 \, \text{kg}^2 \][/tex]
Now the formula looks like this:
[tex]\[ F = \left( 6.67 \times 10^{-11} \, \text{N} \cdot (\text{m}^2 / \text{kg}^2) \right) \frac{64 \, \text{kg}^2}{4 \, \text{m}^2} \][/tex]
Divide [tex]\( 64 \, \text{kg}^2 \)[/tex] by [tex]\( 4 \, \text{m}^2 \)[/tex]:
[tex]\[ \frac{64 \, \text{kg}^2}{4 \, \text{m}^2} = 16 \, \text{kg}^2 / \text{m}^2 \][/tex]
Now multiply:
[tex]\[ F = 6.67 \times 10^{-11} \, \text{N} \cdot (\text{m}^2 / \text{kg}^2) \times 16 \, \text{kg}^2 / \text{m}^2 \][/tex]
[tex]\[ F = 6.67 \times 10^{-11} \times 16 \][/tex]
Calculate [tex]\( 6.67 \times 16 \)[/tex]:
[tex]\[ 6.67 \times 16 = 106.72 \][/tex]
Now add the exponent:
[tex]\[ 106.72 \times 10^{-11} = 1.0672 \times 10^{-9} \, \text{N} \][/tex]
So, the gravitational force between the two bowling balls is:
[tex]\[ F = 1.0672 \times 10^{-9} \, \text{N} \][/tex]
Referring to the given options:
- A. [tex]\( 2.14 \times 10^{-9} \, \text{N} \)[/tex]
- B. [tex]\( 3.21 \times 10^{-8} \, \text{N} \)[/tex]
- C. [tex]\( 2.68 \times 10^{-10} \, \text{N} \)[/tex]
- D. [tex]\( 1.07 \times 10^{-9} \, \text{N} \)[/tex]
The closest and correct answer is:
D. [tex]\( 1.07 \times 10^{-9} \, \text{N} \)[/tex]
Thank you for contributing to our discussion. Don't forget to check back for new answers. Keep asking, answering, and sharing useful information. Your search for solutions ends here at IDNLearn.com. Thank you for visiting, and come back soon for more helpful information.