Join the conversation on IDNLearn.com and get the answers you seek from experts. Our community is ready to provide in-depth answers and practical solutions to any questions you may have.
Sagot :
To find the tension required for the vibrating wire to produce the correct frequency of 4100 Hz (4.1 kHz), we can follow these steps:
### Step 1: Identify Given Values
- Length of the wire ([tex]\(L\)[/tex]): [tex]\(0.050 \text{ m}\)[/tex]
- Diameter of the wire ([tex]\(d\)[/tex]): [tex]\(3.5 \times 10^{-4} \text{ m}\)[/tex]
- Density of the wire ([tex]\(\rho\)[/tex]): [tex]\(7.8 \times 10^3 \text{ kg/m}^3\)[/tex]
- Frequency ([tex]\(f\)[/tex]): [tex]\(4100 \text{ Hz}\)[/tex]
### Step 2: Calculate Cross-Sectional Area
The cross-sectional area [tex]\(A\)[/tex] of the wire can be calculated using the formula for the area of a circle:
[tex]\[ A = \pi \left( \frac{d}{2} \right)^2 \][/tex]
Plugging in the given diameter:
[tex]\[ A = \pi \left( \frac{3.5 \times 10^{-4}}{2} \right)^2 \approx 9.62 \times 10^{-8} \text{ m}^2 \][/tex]
### Step 3: Calculate Mass Per Unit Length
The mass per unit length [tex]\(\mu\)[/tex] of the wire is given by:
[tex]\[ \mu = \rho \times A \][/tex]
Substituting the density and the cross-sectional area:
[tex]\[ \mu = 7.8 \times 10^3 \text{ kg/m}^3 \times 9.62 \times 10^{-8} \text{ m}^2 \approx 0.00075 \text{ kg/m} \][/tex]
### Step 4: Calculate the Tension
The tension [tex]\(T\)[/tex] in the wire can be found using the formula for the fundamental frequency of a vibrating string:
[tex]\[ f = \frac{1}{2L} \sqrt{\frac{T}{\mu}} \][/tex]
Solving for [tex]\(T\)[/tex]:
[tex]\[ T = \left( 2Lf \right)^2 \mu \][/tex]
Substituting the given values:
[tex]\[ T = \left( 2 \times 0.050 \text{ m} \times 4100 \text{ Hz} \right)^2 \times 0.00075 \text{ kg/m} \][/tex]
[tex]\[ T = \left( 410 \text{ s}^{-1} \right)^2 \times 0.00075 \text{ kg/m} \][/tex]
[tex]\[ T = 168100 \times 0.00075 \text{ N} \][/tex]
[tex]\[ T \approx 126.15 \text{ N} \][/tex]
Thus, the tension required for the vibrating wire to produce its correct frequency of 4100 Hz is approximately [tex]\(126.15 \text{ N}\)[/tex].
### Step 1: Identify Given Values
- Length of the wire ([tex]\(L\)[/tex]): [tex]\(0.050 \text{ m}\)[/tex]
- Diameter of the wire ([tex]\(d\)[/tex]): [tex]\(3.5 \times 10^{-4} \text{ m}\)[/tex]
- Density of the wire ([tex]\(\rho\)[/tex]): [tex]\(7.8 \times 10^3 \text{ kg/m}^3\)[/tex]
- Frequency ([tex]\(f\)[/tex]): [tex]\(4100 \text{ Hz}\)[/tex]
### Step 2: Calculate Cross-Sectional Area
The cross-sectional area [tex]\(A\)[/tex] of the wire can be calculated using the formula for the area of a circle:
[tex]\[ A = \pi \left( \frac{d}{2} \right)^2 \][/tex]
Plugging in the given diameter:
[tex]\[ A = \pi \left( \frac{3.5 \times 10^{-4}}{2} \right)^2 \approx 9.62 \times 10^{-8} \text{ m}^2 \][/tex]
### Step 3: Calculate Mass Per Unit Length
The mass per unit length [tex]\(\mu\)[/tex] of the wire is given by:
[tex]\[ \mu = \rho \times A \][/tex]
Substituting the density and the cross-sectional area:
[tex]\[ \mu = 7.8 \times 10^3 \text{ kg/m}^3 \times 9.62 \times 10^{-8} \text{ m}^2 \approx 0.00075 \text{ kg/m} \][/tex]
### Step 4: Calculate the Tension
The tension [tex]\(T\)[/tex] in the wire can be found using the formula for the fundamental frequency of a vibrating string:
[tex]\[ f = \frac{1}{2L} \sqrt{\frac{T}{\mu}} \][/tex]
Solving for [tex]\(T\)[/tex]:
[tex]\[ T = \left( 2Lf \right)^2 \mu \][/tex]
Substituting the given values:
[tex]\[ T = \left( 2 \times 0.050 \text{ m} \times 4100 \text{ Hz} \right)^2 \times 0.00075 \text{ kg/m} \][/tex]
[tex]\[ T = \left( 410 \text{ s}^{-1} \right)^2 \times 0.00075 \text{ kg/m} \][/tex]
[tex]\[ T = 168100 \times 0.00075 \text{ N} \][/tex]
[tex]\[ T \approx 126.15 \text{ N} \][/tex]
Thus, the tension required for the vibrating wire to produce its correct frequency of 4100 Hz is approximately [tex]\(126.15 \text{ N}\)[/tex].
We appreciate your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. IDNLearn.com has the solutions to your questions. Thanks for stopping by, and see you next time for more reliable information.