Connect with knowledgeable individuals and get your questions answered on IDNLearn.com. Join our community to receive prompt and reliable responses to your questions from knowledgeable professionals.
Sagot :
To determine the final volume of the gas in the container, we'll use Boyle's Law, which states that the pressure and volume of a gas are inversely proportional when the temperature remains constant. Mathematically, Boyle's Law is expressed as:
[tex]\[ P_1 \times V_1 = P_2 \times V_2 \][/tex]
where:
- [tex]\( P_1 \)[/tex] is the initial pressure,
- [tex]\( V_1 \)[/tex] is the initial volume,
- [tex]\( P_2 \)[/tex] is the final pressure,
- [tex]\( V_2 \)[/tex] is the final volume.
We are given the following:
- Initial volume [tex]\( V_1 = 3.0 \text{ L} \)[/tex]
- Initial pressure [tex]\( P_1 = 150 \text{ kPa} \)[/tex]
- Final pressure [tex]\( P_2 = 2 \text{ atm} \)[/tex]
However, to use the formula properly, the pressures must be in the same units. We convert the initial pressure from kilopascals (kPa) to atmospheres (atm). The conversion factor is:
[tex]\[ 1 \text{ atm} = 101.325 \text{ kPa} \][/tex]
Thus,
[tex]\[ P_1 = \frac{150 \text{ kPa}}{101.325 \text{ kPa/atm}} \approx 1.480 \text{ atm} \][/tex]
Now we can use Boyle's Law:
[tex]\[ P_1 \times V_1 = P_2 \times V_2 \][/tex]
Substitute the known values:
[tex]\[ 1.480 \text{ atm} \times 3.0 \text{ L} = 2 \text{ atm} \times V_2 \][/tex]
Solving for [tex]\( V_2 \)[/tex]:
[tex]\[ V_2 = \frac{1.480 \text{ atm} \times 3.0 \text{ L}}{2 \text{ atm}} \][/tex]
[tex]\[ V_2 \approx \frac{4.440 \text{ atm} \cdot \text{L}}{2 \text{ atm}} \][/tex]
[tex]\[ V_2 \approx 2.220 \text{ L} \][/tex]
Therefore, the final volume of the gas when the pressure increases to [tex]\( 2 \text{ atm} \)[/tex] is approximately [tex]\( 2.22 \text{ L} \)[/tex]. Out of the given choices, the closest one is:
[tex]\[ 2.25 \text{L} \][/tex]
[tex]\[ P_1 \times V_1 = P_2 \times V_2 \][/tex]
where:
- [tex]\( P_1 \)[/tex] is the initial pressure,
- [tex]\( V_1 \)[/tex] is the initial volume,
- [tex]\( P_2 \)[/tex] is the final pressure,
- [tex]\( V_2 \)[/tex] is the final volume.
We are given the following:
- Initial volume [tex]\( V_1 = 3.0 \text{ L} \)[/tex]
- Initial pressure [tex]\( P_1 = 150 \text{ kPa} \)[/tex]
- Final pressure [tex]\( P_2 = 2 \text{ atm} \)[/tex]
However, to use the formula properly, the pressures must be in the same units. We convert the initial pressure from kilopascals (kPa) to atmospheres (atm). The conversion factor is:
[tex]\[ 1 \text{ atm} = 101.325 \text{ kPa} \][/tex]
Thus,
[tex]\[ P_1 = \frac{150 \text{ kPa}}{101.325 \text{ kPa/atm}} \approx 1.480 \text{ atm} \][/tex]
Now we can use Boyle's Law:
[tex]\[ P_1 \times V_1 = P_2 \times V_2 \][/tex]
Substitute the known values:
[tex]\[ 1.480 \text{ atm} \times 3.0 \text{ L} = 2 \text{ atm} \times V_2 \][/tex]
Solving for [tex]\( V_2 \)[/tex]:
[tex]\[ V_2 = \frac{1.480 \text{ atm} \times 3.0 \text{ L}}{2 \text{ atm}} \][/tex]
[tex]\[ V_2 \approx \frac{4.440 \text{ atm} \cdot \text{L}}{2 \text{ atm}} \][/tex]
[tex]\[ V_2 \approx 2.220 \text{ L} \][/tex]
Therefore, the final volume of the gas when the pressure increases to [tex]\( 2 \text{ atm} \)[/tex] is approximately [tex]\( 2.22 \text{ L} \)[/tex]. Out of the given choices, the closest one is:
[tex]\[ 2.25 \text{L} \][/tex]
We value your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Your questions find clarity at IDNLearn.com. Thanks for stopping by, and come back for more dependable solutions.