Discover new knowledge and insights with IDNLearn.com's extensive Q&A database. Discover comprehensive answers to your questions from our community of experienced professionals.
Sagot :
To determine the distance between the [tex]$2 \, \text{kg}$[/tex] laptop and the [tex]$4 \, \text{kg}$[/tex] jar of pennies, given the gravitational force of [tex]$3.42 \times 10^{-10} \, \text{N}$[/tex], we can use the formula for gravitational force:
[tex]\[ F = G \frac{m_1 m_2}{r^2} \][/tex]
where:
- [tex]\( F \)[/tex] is the gravitational force,
- [tex]\( G \)[/tex] is the gravitational constant [tex]\( (6.67430 \times 10^{-11} \, \text{m}^3 \, \text{kg}^{-1} \, \text{s}^{-1}) \)[/tex],
- [tex]\( m_1 \)[/tex] and [tex]\( m_2 \)[/tex] are the masses of the two objects, and
- [tex]\( r \)[/tex] is the distance between the centers of the two masses.
Given:
- [tex]\( F = 3.42 \times 10^{-10} \, \text{N} \)[/tex],
- [tex]\( m_1 = 2 \, \text{kg} \)[/tex],
- [tex]\( m_2 = 4 \, \text{kg} \)[/tex].
First, we rearrange the gravitational force formula to solve for [tex]\( r \)[/tex]:
[tex]\[ r^2 = G \frac{m_1 m_2}{F} \][/tex]
Next, substitute the known values into the equation:
[tex]\[ r^2 = \left(6.67430 \times 10^{-11} \, \text{m}^3 \, \text{kg}^{-1} \, \text{s}^{-1}\right) \frac{(2 \, \text{kg}) (4 \, \text{kg})}{3.42 \times 10^{-10} \, \text{N}} \][/tex]
Simplify the expression inside the fraction:
[tex]\[ r^2 = \left(6.67430 \times 10^{-11} \, \text{m}^3 \, \text{kg}^{-1} \, \text{s}^{-1}\right) \frac{8 \, \text{kg}^2}{3.42 \times 10^{-10} \, \text{N}} \][/tex]
Calculate the numerical result of the fraction:
[tex]\[ r^2 = \left(6.67430 \times 10^{-11}\right) \frac{8}{3.42 \times 10^{-10}} \][/tex]
[tex]\[ r^2 \approx 1.561239766081871 \, \text{m}^2 \][/tex]
Now, take the square root of both sides to solve for [tex]\( r \)[/tex]:
[tex]\[ r \approx \sqrt{1.561239766081871} \, \text{m} \][/tex]
[tex]\[ r \approx 1.2494958047476075 \, \text{m} \][/tex]
Rounding to two decimal places, the distance [tex]\( r \)[/tex] is approximately [tex]\( 1.25 \, \text{m} \)[/tex].
Therefore, the correct answer is:
A. [tex]\(\boxed{1.25 \, \text{m}}\)[/tex]
[tex]\[ F = G \frac{m_1 m_2}{r^2} \][/tex]
where:
- [tex]\( F \)[/tex] is the gravitational force,
- [tex]\( G \)[/tex] is the gravitational constant [tex]\( (6.67430 \times 10^{-11} \, \text{m}^3 \, \text{kg}^{-1} \, \text{s}^{-1}) \)[/tex],
- [tex]\( m_1 \)[/tex] and [tex]\( m_2 \)[/tex] are the masses of the two objects, and
- [tex]\( r \)[/tex] is the distance between the centers of the two masses.
Given:
- [tex]\( F = 3.42 \times 10^{-10} \, \text{N} \)[/tex],
- [tex]\( m_1 = 2 \, \text{kg} \)[/tex],
- [tex]\( m_2 = 4 \, \text{kg} \)[/tex].
First, we rearrange the gravitational force formula to solve for [tex]\( r \)[/tex]:
[tex]\[ r^2 = G \frac{m_1 m_2}{F} \][/tex]
Next, substitute the known values into the equation:
[tex]\[ r^2 = \left(6.67430 \times 10^{-11} \, \text{m}^3 \, \text{kg}^{-1} \, \text{s}^{-1}\right) \frac{(2 \, \text{kg}) (4 \, \text{kg})}{3.42 \times 10^{-10} \, \text{N}} \][/tex]
Simplify the expression inside the fraction:
[tex]\[ r^2 = \left(6.67430 \times 10^{-11} \, \text{m}^3 \, \text{kg}^{-1} \, \text{s}^{-1}\right) \frac{8 \, \text{kg}^2}{3.42 \times 10^{-10} \, \text{N}} \][/tex]
Calculate the numerical result of the fraction:
[tex]\[ r^2 = \left(6.67430 \times 10^{-11}\right) \frac{8}{3.42 \times 10^{-10}} \][/tex]
[tex]\[ r^2 \approx 1.561239766081871 \, \text{m}^2 \][/tex]
Now, take the square root of both sides to solve for [tex]\( r \)[/tex]:
[tex]\[ r \approx \sqrt{1.561239766081871} \, \text{m} \][/tex]
[tex]\[ r \approx 1.2494958047476075 \, \text{m} \][/tex]
Rounding to two decimal places, the distance [tex]\( r \)[/tex] is approximately [tex]\( 1.25 \, \text{m} \)[/tex].
Therefore, the correct answer is:
A. [tex]\(\boxed{1.25 \, \text{m}}\)[/tex]
We appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. Your search for solutions ends at IDNLearn.com. Thank you for visiting, and we look forward to helping you again.