Get personalized and accurate responses to your questions with IDNLearn.com. Discover prompt and accurate answers from our community of experienced professionals.
Sagot :
Certainly! Let's solve this step-by-step.
We know from the problem statement that:
- Each man has a mass ([tex]\( m_1 \)[/tex] and [tex]\( m_2 \)[/tex]) of [tex]\( 90 \, kg \)[/tex].
- The gravitational force ([tex]\( F \)[/tex]) between them is [tex]\( 8.64 \times 10^{-8} \, N \)[/tex].
- The gravitational constant ([tex]\( G \)[/tex]) is [tex]\( 6.67 \times 10^{-11} \, N \cdot (m/kg)^2 \)[/tex].
We want to find the distance ([tex]\( r \)[/tex]) between the two men. The formula for gravitational force is:
[tex]\[ F = G \cdot \frac{m_1 \cdot m_2}{r^2} \][/tex]
Solving for [tex]\(\ r \)[/tex]:
[tex]\[ r^2 = G \cdot \frac{m_1 \cdot m_2}{F} \][/tex]
First, let's compute the value of [tex]\( r^2 \)[/tex]:
[tex]\[ r^2 = \frac{G \cdot m_1 \cdot m_2}{F} \][/tex]
[tex]\[ r^2 = \frac{6.67 \times 10^{-11} \, N \cdot (m/kg)^2 \cdot 90 \, kg \cdot 90 \, kg}{8.64 \times 10^{-8} \, N} \][/tex]
Given that:
[tex]\[ G = 6.67 \times 10^{-11} \, N \cdot (m/kg)^2 \][/tex]
[tex]\[ m_1 = 90 \, kg \][/tex]
[tex]\[ m_2 = 90 \, kg \][/tex]
[tex]\[ F = 8.64 \times 10^{-8} \, N \][/tex]
Plugging in these values:
[tex]\[ r^2 = \frac{(6.67 \times 10^{-11}) \cdot 90 \cdot 90}{8.64 \times 10^{-8}} \][/tex]
[tex]\[ r^2 \approx 6.253125 \][/tex]
Next, we need to find the square root of [tex]\(\ r^2 \)[/tex] to get [tex]\( r \)[/tex]:
[tex]\[ r = \sqrt{6.253125} \][/tex]
[tex]\[ r \approx 2.5006 \, m\][/tex]
Therefore, the distance between the two men is approximately [tex]\(2.5\, m\)[/tex].
So, the correct answer is:
C. [tex]\(2.5\, m\)[/tex]
We know from the problem statement that:
- Each man has a mass ([tex]\( m_1 \)[/tex] and [tex]\( m_2 \)[/tex]) of [tex]\( 90 \, kg \)[/tex].
- The gravitational force ([tex]\( F \)[/tex]) between them is [tex]\( 8.64 \times 10^{-8} \, N \)[/tex].
- The gravitational constant ([tex]\( G \)[/tex]) is [tex]\( 6.67 \times 10^{-11} \, N \cdot (m/kg)^2 \)[/tex].
We want to find the distance ([tex]\( r \)[/tex]) between the two men. The formula for gravitational force is:
[tex]\[ F = G \cdot \frac{m_1 \cdot m_2}{r^2} \][/tex]
Solving for [tex]\(\ r \)[/tex]:
[tex]\[ r^2 = G \cdot \frac{m_1 \cdot m_2}{F} \][/tex]
First, let's compute the value of [tex]\( r^2 \)[/tex]:
[tex]\[ r^2 = \frac{G \cdot m_1 \cdot m_2}{F} \][/tex]
[tex]\[ r^2 = \frac{6.67 \times 10^{-11} \, N \cdot (m/kg)^2 \cdot 90 \, kg \cdot 90 \, kg}{8.64 \times 10^{-8} \, N} \][/tex]
Given that:
[tex]\[ G = 6.67 \times 10^{-11} \, N \cdot (m/kg)^2 \][/tex]
[tex]\[ m_1 = 90 \, kg \][/tex]
[tex]\[ m_2 = 90 \, kg \][/tex]
[tex]\[ F = 8.64 \times 10^{-8} \, N \][/tex]
Plugging in these values:
[tex]\[ r^2 = \frac{(6.67 \times 10^{-11}) \cdot 90 \cdot 90}{8.64 \times 10^{-8}} \][/tex]
[tex]\[ r^2 \approx 6.253125 \][/tex]
Next, we need to find the square root of [tex]\(\ r^2 \)[/tex] to get [tex]\( r \)[/tex]:
[tex]\[ r = \sqrt{6.253125} \][/tex]
[tex]\[ r \approx 2.5006 \, m\][/tex]
Therefore, the distance between the two men is approximately [tex]\(2.5\, m\)[/tex].
So, the correct answer is:
C. [tex]\(2.5\, m\)[/tex]
We appreciate your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Thank you for trusting IDNLearn.com. We’re dedicated to providing accurate answers, so visit us again for more solutions.