IDNLearn.com: Your go-to resource for finding precise and accurate answers. Discover in-depth and trustworthy answers to all your questions from our experienced community members.
Sagot :
Certainly! To expand [tex]\( f(x, y) = e^{xy} \)[/tex] as a Taylor series around the point [tex]\( (1, i) \)[/tex] up to and including the first degree terms, we need to follow these steps:
1. Evaluate the function at the point [tex]\( (1, i) \)[/tex]:
[tex]\[ f(1, i) = e^{1 \cdot i} = e^i \][/tex]
By Euler's formula, [tex]\( e^i = \cos(1) + i \sin(1) \)[/tex].
2. Compute the partial derivatives of [tex]\( f(x, y) \)[/tex]:
- First partial derivative with respect to [tex]\( x \)[/tex]:
[tex]\[ \frac{\partial f}{\partial x} = y e^{xy} \][/tex]
- Evaluating at [tex]\( (1, i) \)[/tex]:
[tex]\[ \left. \frac{\partial f}{\partial x} \right|_{(1, i)} = i e^i = i (\cos(1) + i \sin(1)) = i \cos(1) - \sin(1) \][/tex]
- First partial derivative with respect to [tex]\( y \)[/tex]:
[tex]\[ \frac{\partial f}{\partial y} = x e^{xy} \][/tex]
- Evaluating at [tex]\( (1, i) \)[/tex]:
[tex]\[ \left. \frac{\partial f}{\partial y} \right|_{(1, i)} = 1 \cdot e^i = e^i = \cos(1) + i \sin(1) \][/tex]
3. Construct the Taylor series expansion up to the first degree terms:
The Taylor series expansion of a function [tex]\( f(x, y) \)[/tex] around a point [tex]\( (a, b) \)[/tex] up to the first degree terms is given by:
[tex]\[ f(x, y) \approx f(a, b) + \left. \frac{\partial f}{\partial x} \right|_{(a, b)} (x - a) + \left. \frac{\partial f}{\partial y} \right|_{(a, b)} (y - b) \][/tex]
Substituting [tex]\( (a, b) = (1, i) \)[/tex], we get:
[tex]\[ f(x, y) \approx e^i + \left( i \cos(1) - \sin(1) \right)(x - 1) + \left( \cos(1) + i \sin(1) \right)(y - i) \][/tex]
4. Simplify the expression:
Combining all terms, the Taylor series expansion of [tex]\( e^{xy} \)[/tex] around [tex]\( (1, i) \)[/tex] up to the first degree is:
[tex]\[ e^{xy} \approx e^i + \left( i \cos(1) - \sin(1) \right)(x - 1) + \left( \cos(1) + i \sin(1) \right)(y - i) \][/tex]
By substituting the complex value [tex]\( e^i \)[/tex], [tex]\( i \cos(1) - \sin(1) \)[/tex], and [tex]\( \cos(1) + i \sin(1) \)[/tex] into the series, the expression remains straightforward yet combines the results yielding the final Taylor expansion around point [tex]\( (1, i) \)[/tex]:
[tex]\[ e^{xy} \approx (\cos(1) + i \sin(1)) + \left( i \cos(1) - \sin(1) \right)(x - 1) + \left( \cos(1) + i \sin(1) \right)(y - i) \][/tex]
This gives you a complete first-degree Taylor expansion of the function [tex]\( e^{xy} \)[/tex] around the point [tex]\( (1, i) \)[/tex].
1. Evaluate the function at the point [tex]\( (1, i) \)[/tex]:
[tex]\[ f(1, i) = e^{1 \cdot i} = e^i \][/tex]
By Euler's formula, [tex]\( e^i = \cos(1) + i \sin(1) \)[/tex].
2. Compute the partial derivatives of [tex]\( f(x, y) \)[/tex]:
- First partial derivative with respect to [tex]\( x \)[/tex]:
[tex]\[ \frac{\partial f}{\partial x} = y e^{xy} \][/tex]
- Evaluating at [tex]\( (1, i) \)[/tex]:
[tex]\[ \left. \frac{\partial f}{\partial x} \right|_{(1, i)} = i e^i = i (\cos(1) + i \sin(1)) = i \cos(1) - \sin(1) \][/tex]
- First partial derivative with respect to [tex]\( y \)[/tex]:
[tex]\[ \frac{\partial f}{\partial y} = x e^{xy} \][/tex]
- Evaluating at [tex]\( (1, i) \)[/tex]:
[tex]\[ \left. \frac{\partial f}{\partial y} \right|_{(1, i)} = 1 \cdot e^i = e^i = \cos(1) + i \sin(1) \][/tex]
3. Construct the Taylor series expansion up to the first degree terms:
The Taylor series expansion of a function [tex]\( f(x, y) \)[/tex] around a point [tex]\( (a, b) \)[/tex] up to the first degree terms is given by:
[tex]\[ f(x, y) \approx f(a, b) + \left. \frac{\partial f}{\partial x} \right|_{(a, b)} (x - a) + \left. \frac{\partial f}{\partial y} \right|_{(a, b)} (y - b) \][/tex]
Substituting [tex]\( (a, b) = (1, i) \)[/tex], we get:
[tex]\[ f(x, y) \approx e^i + \left( i \cos(1) - \sin(1) \right)(x - 1) + \left( \cos(1) + i \sin(1) \right)(y - i) \][/tex]
4. Simplify the expression:
Combining all terms, the Taylor series expansion of [tex]\( e^{xy} \)[/tex] around [tex]\( (1, i) \)[/tex] up to the first degree is:
[tex]\[ e^{xy} \approx e^i + \left( i \cos(1) - \sin(1) \right)(x - 1) + \left( \cos(1) + i \sin(1) \right)(y - i) \][/tex]
By substituting the complex value [tex]\( e^i \)[/tex], [tex]\( i \cos(1) - \sin(1) \)[/tex], and [tex]\( \cos(1) + i \sin(1) \)[/tex] into the series, the expression remains straightforward yet combines the results yielding the final Taylor expansion around point [tex]\( (1, i) \)[/tex]:
[tex]\[ e^{xy} \approx (\cos(1) + i \sin(1)) + \left( i \cos(1) - \sin(1) \right)(x - 1) + \left( \cos(1) + i \sin(1) \right)(y - i) \][/tex]
This gives you a complete first-degree Taylor expansion of the function [tex]\( e^{xy} \)[/tex] around the point [tex]\( (1, i) \)[/tex].
Thank you for being part of this discussion. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. IDNLearn.com is your reliable source for accurate answers. Thank you for visiting, and we hope to assist you again.