IDNLearn.com is the perfect place to get detailed and accurate answers to your questions. Our experts provide prompt and accurate answers to help you make informed decisions on any topic.

Verify whether the following is a probability density function:

[tex]\[ f(x) = \frac{1}{3}, \quad 0 \leq x \leq 3 \][/tex]
[tex]\[ = 0, \quad \text{otherwise} \][/tex]


Sagot :

To verify whether [tex]\( f(x) = \frac{1}{3} \)[/tex] for [tex]\( 0 \leq x \leq 3 \)[/tex] and [tex]\( f(x) = 0 \)[/tex] otherwise is a probability density function (pdf), we need to check two essential conditions:

1. Non-negativity: The function [tex]\( f(x) \)[/tex] must be non-negative for all values of [tex]\( x \)[/tex].
2. Normalization: The total integral of [tex]\( f(x) \)[/tex] over the entire range must be equal to 1.

### Step 1: Non-negativity
We need to ensure [tex]\( f(x) \geq 0 \)[/tex] for all [tex]\( x \)[/tex].

- For [tex]\( 0 \leq x \leq 3 \)[/tex], [tex]\( f(x) = \frac{1}{3} \)[/tex]. Since [tex]\(\frac{1}{3} \)[/tex] is a positive number, [tex]\( f(x) \geq 0 \)[/tex] in this interval.
- For [tex]\( x < 0 \)[/tex] or [tex]\( x > 3 \)[/tex], [tex]\( f(x) = 0 \)[/tex] which is also non-negative.

Thus, [tex]\( f(x) \geq 0 \)[/tex] for all [tex]\( x \)[/tex].

### Step 2: Normalization
We need to check if the total integral of [tex]\( f(x) \)[/tex] over the entire range equals 1.
[tex]\[ \int_{-\infty}^{\infty} f(x) \, dx = 1 \][/tex]

Splitting the integral into the defined ranges of [tex]\( f(x) \)[/tex], we have:
[tex]\[ \int_{-\infty}^{\infty} f(x) \, dx = \int_{-\infty}^{0} f(x) \, dx + \int_{0}^{3} f(x) \, dx + \int_{3}^{\infty} f(x) \, dx \][/tex]

Since [tex]\( f(x) = 0 \)[/tex] for [tex]\( x < 0 \)[/tex] and [tex]\( x > 3 \)[/tex], these integrals will be zero:
[tex]\[ \int_{-\infty}^{0} f(x) \, dx = 0 \][/tex]
[tex]\[ \int_{3}^{\infty} f(x) \, dx = 0 \][/tex]

So we are left with:
[tex]\[ \int_{-\infty}^{\infty} f(x) \, dx = \int_{0}^{3} f(x) \, dx \][/tex]

For [tex]\( 0 \leq x \leq 3 \)[/tex], [tex]\( f(x) = \frac{1}{3} \)[/tex], thus:
[tex]\[ \int_{0}^{3} f(x) \, dx = \int_{0}^{3} \frac{1}{3} \, dx \][/tex]

Evaluating this integral:
[tex]\[ \int_{0}^{3} \frac{1}{3} \, dx = \frac{1}{3} \times (3 - 0) = \frac{1}{3} \times 3 = 1 \][/tex]

Since the integral over the entire range equals 1, the normalization condition is satisfied.

### Conclusion
Since [tex]\( f(x) \)[/tex] is non-negative for all [tex]\( x \)[/tex] and its integral over the entire range is equal to 1, [tex]\( f(x) \)[/tex] satisfies the conditions to be a probability density function.

Therefore, [tex]\( f(x) = \frac{1}{3} \)[/tex] for [tex]\( 0 \leq x \leq 3 \)[/tex] and [tex]\( f(x) = 0 \)[/tex] otherwise is indeed a probability density function. The validation shows that the total area under the curve [tex]\( f(x) \)[/tex] is 1, confirming that it can represent a valid pdf.
Your engagement is important to us. Keep sharing your knowledge and experiences. Let's create a learning environment that is both enjoyable and beneficial. IDNLearn.com has the solutions to your questions. Thanks for stopping by, and come back for more insightful information.