Connect with knowledgeable experts and enthusiasts on IDNLearn.com. Ask anything and receive prompt, well-informed answers from our community of experienced experts.
Sagot :
Para resolver este problema, sigamos los siguientes pasos:
1. Escribamos la ecuación balanceada de la reacción:
[tex]\[ N_2(g) + 3H_2(g) \rightarrow 2NH_3(g) \][/tex]
2. Determinar las cantidades iniciales de los reactivos:
- Moles iniciales de [tex]\( N_2 \)[/tex]: 0.5 moles
- Moles iniciales de [tex]\( H_2 \)[/tex]: 1.0 moles
3. Determinar las proporciones estequiométricas de la reacción:
- De la ecuación balanceada, sabemos que 1 mol de [tex]\( N_2 \)[/tex] reacciona con 3 moles de [tex]\( H_2 \)[/tex].
4. Calcular cuántas reacciones pueden ocurrir con cada reactivo:
- Para [tex]\( N_2 \)[/tex]:
[tex]\[ \text{Reacciones posibles con } N_2 = \frac{0.5 \text{ moles } N_2}{1 \text{ mol } N_2} = 0.5 \text{ reacciones} \][/tex]
- Para [tex]\( H_2 \)[/tex]:
[tex]\[ \text{Reacciones posibles con } H_2 = \frac{1.0 \text{ moles } H_2}{3 \text{ moles } H_2} = \frac{1.0}{3} \approx 0.333 \text{ reacciones} \][/tex]
5. Identificar el reactivo limitante:
- El reactivo limitante es aquel que permite realizar menos reacciones. En este caso, [tex]\( H_2 \)[/tex] permite realizar aproximadamente 0.333 reacciones, mientras que [tex]\( N_2 \)[/tex] permite 0.5 reacciones.
- Por lo tanto, el reactivo limitante es [tex]\( H_2 \)[/tex].
6. Determinar el reactivo en exceso:
- Dado que [tex]\( H_2 \)[/tex] es el reactivo limitante, [tex]\( N_2 \)[/tex] será el reactivo en exceso.
7. Calcular los moles del producto [tex]\( NH_3 \)[/tex] formados:
- Usamos el número de reacciones posibles con el reactivo limitante [tex]\( H_2 \)[/tex]:
[tex]\[ \text{Moles de } NH_3 \text{ producidos} = 2 \times 0.333 = 0.666 \text{ moles} \][/tex]
8. Calcular los moles restantes del reactivo en exceso:
- Moles iniciales de [tex]\( N_2 \)[/tex]: 0.5 moles
- Moles de [tex]\( N_2 \)[/tex] usados en 0.333 reacciones:
[tex]\[ \text{Moles de } N_2 \text{ usados} = 0.333 \text{ reacciones} \times 1 \text{ mol}$ N_2 \text{ por reacción} = 0.333 \text{ moles} \][/tex]
- Moles restantes de [tex]\( N_2 \)[/tex]:
[tex]\[ Moles \, restantes \, de \, N_2 = 0.5 - 0.333 = 0.167 \text{ moles} \][/tex]
9. Los moles restantes de [tex]\( H_2 \)[/tex]:
- Dado que [tex]\( H_2 \)[/tex] es el reactivo limitante, no hay [tex]\( H_2 \)[/tex] restante. Por lo tanto, hay 0 moles de [tex]\( H_2 \)[/tex] restantes.
Resumiendo, la solución es:
- Reactivo limitante: [tex]\( H_2 \)[/tex]
- Reactivo en exceso: [tex]\( N_2 \)[/tex]
- Moles de [tex]\( NH_3 \)[/tex] producidos: 0.666 moles
- Moles restantes de [tex]\( N_2 \)[/tex]: 0.167 moles
- Moles restantes de [tex]\( H_2 \)[/tex]: 0 moles
1. Escribamos la ecuación balanceada de la reacción:
[tex]\[ N_2(g) + 3H_2(g) \rightarrow 2NH_3(g) \][/tex]
2. Determinar las cantidades iniciales de los reactivos:
- Moles iniciales de [tex]\( N_2 \)[/tex]: 0.5 moles
- Moles iniciales de [tex]\( H_2 \)[/tex]: 1.0 moles
3. Determinar las proporciones estequiométricas de la reacción:
- De la ecuación balanceada, sabemos que 1 mol de [tex]\( N_2 \)[/tex] reacciona con 3 moles de [tex]\( H_2 \)[/tex].
4. Calcular cuántas reacciones pueden ocurrir con cada reactivo:
- Para [tex]\( N_2 \)[/tex]:
[tex]\[ \text{Reacciones posibles con } N_2 = \frac{0.5 \text{ moles } N_2}{1 \text{ mol } N_2} = 0.5 \text{ reacciones} \][/tex]
- Para [tex]\( H_2 \)[/tex]:
[tex]\[ \text{Reacciones posibles con } H_2 = \frac{1.0 \text{ moles } H_2}{3 \text{ moles } H_2} = \frac{1.0}{3} \approx 0.333 \text{ reacciones} \][/tex]
5. Identificar el reactivo limitante:
- El reactivo limitante es aquel que permite realizar menos reacciones. En este caso, [tex]\( H_2 \)[/tex] permite realizar aproximadamente 0.333 reacciones, mientras que [tex]\( N_2 \)[/tex] permite 0.5 reacciones.
- Por lo tanto, el reactivo limitante es [tex]\( H_2 \)[/tex].
6. Determinar el reactivo en exceso:
- Dado que [tex]\( H_2 \)[/tex] es el reactivo limitante, [tex]\( N_2 \)[/tex] será el reactivo en exceso.
7. Calcular los moles del producto [tex]\( NH_3 \)[/tex] formados:
- Usamos el número de reacciones posibles con el reactivo limitante [tex]\( H_2 \)[/tex]:
[tex]\[ \text{Moles de } NH_3 \text{ producidos} = 2 \times 0.333 = 0.666 \text{ moles} \][/tex]
8. Calcular los moles restantes del reactivo en exceso:
- Moles iniciales de [tex]\( N_2 \)[/tex]: 0.5 moles
- Moles de [tex]\( N_2 \)[/tex] usados en 0.333 reacciones:
[tex]\[ \text{Moles de } N_2 \text{ usados} = 0.333 \text{ reacciones} \times 1 \text{ mol}$ N_2 \text{ por reacción} = 0.333 \text{ moles} \][/tex]
- Moles restantes de [tex]\( N_2 \)[/tex]:
[tex]\[ Moles \, restantes \, de \, N_2 = 0.5 - 0.333 = 0.167 \text{ moles} \][/tex]
9. Los moles restantes de [tex]\( H_2 \)[/tex]:
- Dado que [tex]\( H_2 \)[/tex] es el reactivo limitante, no hay [tex]\( H_2 \)[/tex] restante. Por lo tanto, hay 0 moles de [tex]\( H_2 \)[/tex] restantes.
Resumiendo, la solución es:
- Reactivo limitante: [tex]\( H_2 \)[/tex]
- Reactivo en exceso: [tex]\( N_2 \)[/tex]
- Moles de [tex]\( NH_3 \)[/tex] producidos: 0.666 moles
- Moles restantes de [tex]\( N_2 \)[/tex]: 0.167 moles
- Moles restantes de [tex]\( H_2 \)[/tex]: 0 moles
Thank you for joining our conversation. Don't hesitate to return anytime to find answers to your questions. Let's continue sharing knowledge and experiences! For dependable and accurate answers, visit IDNLearn.com. Thanks for visiting, and see you next time for more helpful information.