Find solutions to your problems with the expert advice available on IDNLearn.com. Discover detailed answers to your questions with our extensive database of expert knowledge.
Sagot :
To determine how many grams of nitrogen ([tex]\( \text{N}_2 \)[/tex]) are required to produce 100.0 liters of ammonia ([tex]\( \text{NH}_3 \)[/tex]) at standard temperature and pressure (STP), we can follow these steps:
### Step 1: Identify the Molar Volume at STP
At STP, one mole of any ideal gas occupies 22.4 liters. Thus, we can use this value to find the number of moles of [tex]\( \text{NH}_3 \)[/tex].
### Step 2: Determine the Moles of [tex]\( \text{NH}_3 \)[/tex]
Given 100.0 liters of [tex]\( \text{NH}_3 \)[/tex] at STP, we can calculate the moles of [tex]\( \text{NH}_3 \)[/tex]:
[tex]\[ \text{moles of } \text{NH}_3 = \frac{\text{volume of } \text{NH}_3}{\text{molar volume at STP}} = \frac{100.0 \, \text{L}}{22.4 \, \text{L/mol}} \approx 4.464 \, \text{moles} \][/tex]
### Step 3: Use Stoichiometry of the Reaction
The balanced chemical equation for the reaction is:
[tex]\[ \text{N}_2(g) + 3 \text{H}_2(g) \rightarrow 2 \text{NH}_3(g) \][/tex]
From the equation, we see that 1 mole of [tex]\( \text{N}_2 \)[/tex] produces 2 moles of [tex]\( \text{NH}_3 \)[/tex]. Therefore, we need:
[tex]\[ \text{moles of } \text{N}_2 = \frac{\text{moles of } \text{NH}_3}{2} = \frac{4.464}{2} \approx 2.232 \, \text{moles} \][/tex]
### Step 4: Calculate the Mass of [tex]\( \text{N}_2 \)[/tex]
We know the molar mass of [tex]\( \text{N}_2 \)[/tex] is 28.0 grams per mole. Using this, we can calculate the mass of [tex]\( \text{N}_2 \)[/tex] required:
[tex]\[ \text{mass of } \text{N}_2 = \text{moles of } \text{N}_2 \times \text{molar mass of } \text{N}_2 = 2.232 \, \text{moles} \times 28.0 \, \text{g/mol} = 62.5 \, \text{g} \][/tex]
### Conclusion
The number of grams of nitrogen required to produce 100.0 liters of ammonia at STP is:
[tex]\[ 62.5 \, \text{grams} \][/tex]
Thus, the correct answer is:
[tex]\[ 62.5 \, \text{g} \][/tex]
### Step 1: Identify the Molar Volume at STP
At STP, one mole of any ideal gas occupies 22.4 liters. Thus, we can use this value to find the number of moles of [tex]\( \text{NH}_3 \)[/tex].
### Step 2: Determine the Moles of [tex]\( \text{NH}_3 \)[/tex]
Given 100.0 liters of [tex]\( \text{NH}_3 \)[/tex] at STP, we can calculate the moles of [tex]\( \text{NH}_3 \)[/tex]:
[tex]\[ \text{moles of } \text{NH}_3 = \frac{\text{volume of } \text{NH}_3}{\text{molar volume at STP}} = \frac{100.0 \, \text{L}}{22.4 \, \text{L/mol}} \approx 4.464 \, \text{moles} \][/tex]
### Step 3: Use Stoichiometry of the Reaction
The balanced chemical equation for the reaction is:
[tex]\[ \text{N}_2(g) + 3 \text{H}_2(g) \rightarrow 2 \text{NH}_3(g) \][/tex]
From the equation, we see that 1 mole of [tex]\( \text{N}_2 \)[/tex] produces 2 moles of [tex]\( \text{NH}_3 \)[/tex]. Therefore, we need:
[tex]\[ \text{moles of } \text{N}_2 = \frac{\text{moles of } \text{NH}_3}{2} = \frac{4.464}{2} \approx 2.232 \, \text{moles} \][/tex]
### Step 4: Calculate the Mass of [tex]\( \text{N}_2 \)[/tex]
We know the molar mass of [tex]\( \text{N}_2 \)[/tex] is 28.0 grams per mole. Using this, we can calculate the mass of [tex]\( \text{N}_2 \)[/tex] required:
[tex]\[ \text{mass of } \text{N}_2 = \text{moles of } \text{N}_2 \times \text{molar mass of } \text{N}_2 = 2.232 \, \text{moles} \times 28.0 \, \text{g/mol} = 62.5 \, \text{g} \][/tex]
### Conclusion
The number of grams of nitrogen required to produce 100.0 liters of ammonia at STP is:
[tex]\[ 62.5 \, \text{grams} \][/tex]
Thus, the correct answer is:
[tex]\[ 62.5 \, \text{g} \][/tex]
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. IDNLearn.com is committed to your satisfaction. Thank you for visiting, and see you next time for more helpful answers.