Join IDNLearn.com and start getting the answers you've been searching for. Our platform offers comprehensive and accurate responses to help you make informed decisions on any topic.
Sagot :
To determine how many grams of nitrogen ([tex]\( \text{N}_2 \)[/tex]) are required to produce 100.0 liters of ammonia ([tex]\( \text{NH}_3 \)[/tex]) at standard temperature and pressure (STP), we can follow these steps:
### Step 1: Identify the Molar Volume at STP
At STP, one mole of any ideal gas occupies 22.4 liters. Thus, we can use this value to find the number of moles of [tex]\( \text{NH}_3 \)[/tex].
### Step 2: Determine the Moles of [tex]\( \text{NH}_3 \)[/tex]
Given 100.0 liters of [tex]\( \text{NH}_3 \)[/tex] at STP, we can calculate the moles of [tex]\( \text{NH}_3 \)[/tex]:
[tex]\[ \text{moles of } \text{NH}_3 = \frac{\text{volume of } \text{NH}_3}{\text{molar volume at STP}} = \frac{100.0 \, \text{L}}{22.4 \, \text{L/mol}} \approx 4.464 \, \text{moles} \][/tex]
### Step 3: Use Stoichiometry of the Reaction
The balanced chemical equation for the reaction is:
[tex]\[ \text{N}_2(g) + 3 \text{H}_2(g) \rightarrow 2 \text{NH}_3(g) \][/tex]
From the equation, we see that 1 mole of [tex]\( \text{N}_2 \)[/tex] produces 2 moles of [tex]\( \text{NH}_3 \)[/tex]. Therefore, we need:
[tex]\[ \text{moles of } \text{N}_2 = \frac{\text{moles of } \text{NH}_3}{2} = \frac{4.464}{2} \approx 2.232 \, \text{moles} \][/tex]
### Step 4: Calculate the Mass of [tex]\( \text{N}_2 \)[/tex]
We know the molar mass of [tex]\( \text{N}_2 \)[/tex] is 28.0 grams per mole. Using this, we can calculate the mass of [tex]\( \text{N}_2 \)[/tex] required:
[tex]\[ \text{mass of } \text{N}_2 = \text{moles of } \text{N}_2 \times \text{molar mass of } \text{N}_2 = 2.232 \, \text{moles} \times 28.0 \, \text{g/mol} = 62.5 \, \text{g} \][/tex]
### Conclusion
The number of grams of nitrogen required to produce 100.0 liters of ammonia at STP is:
[tex]\[ 62.5 \, \text{grams} \][/tex]
Thus, the correct answer is:
[tex]\[ 62.5 \, \text{g} \][/tex]
### Step 1: Identify the Molar Volume at STP
At STP, one mole of any ideal gas occupies 22.4 liters. Thus, we can use this value to find the number of moles of [tex]\( \text{NH}_3 \)[/tex].
### Step 2: Determine the Moles of [tex]\( \text{NH}_3 \)[/tex]
Given 100.0 liters of [tex]\( \text{NH}_3 \)[/tex] at STP, we can calculate the moles of [tex]\( \text{NH}_3 \)[/tex]:
[tex]\[ \text{moles of } \text{NH}_3 = \frac{\text{volume of } \text{NH}_3}{\text{molar volume at STP}} = \frac{100.0 \, \text{L}}{22.4 \, \text{L/mol}} \approx 4.464 \, \text{moles} \][/tex]
### Step 3: Use Stoichiometry of the Reaction
The balanced chemical equation for the reaction is:
[tex]\[ \text{N}_2(g) + 3 \text{H}_2(g) \rightarrow 2 \text{NH}_3(g) \][/tex]
From the equation, we see that 1 mole of [tex]\( \text{N}_2 \)[/tex] produces 2 moles of [tex]\( \text{NH}_3 \)[/tex]. Therefore, we need:
[tex]\[ \text{moles of } \text{N}_2 = \frac{\text{moles of } \text{NH}_3}{2} = \frac{4.464}{2} \approx 2.232 \, \text{moles} \][/tex]
### Step 4: Calculate the Mass of [tex]\( \text{N}_2 \)[/tex]
We know the molar mass of [tex]\( \text{N}_2 \)[/tex] is 28.0 grams per mole. Using this, we can calculate the mass of [tex]\( \text{N}_2 \)[/tex] required:
[tex]\[ \text{mass of } \text{N}_2 = \text{moles of } \text{N}_2 \times \text{molar mass of } \text{N}_2 = 2.232 \, \text{moles} \times 28.0 \, \text{g/mol} = 62.5 \, \text{g} \][/tex]
### Conclusion
The number of grams of nitrogen required to produce 100.0 liters of ammonia at STP is:
[tex]\[ 62.5 \, \text{grams} \][/tex]
Thus, the correct answer is:
[tex]\[ 62.5 \, \text{g} \][/tex]
We appreciate your contributions to this forum. Don't forget to check back for the latest answers. Keep asking, answering, and sharing useful information. For clear and precise answers, choose IDNLearn.com. Thanks for stopping by, and come back soon for more valuable insights.