IDNLearn.com makes it easy to find accurate answers to your questions. Join our interactive Q&A community and get reliable, detailed answers from experienced professionals across a variety of topics.
Sagot :
To solve this problem, we need to follow two main steps:
1. Determine the strength of the magnetic field, [tex]\( B \)[/tex].
2. Use this magnetic field strength to find the magnetic force on the second particle.
### Step 1: Calculate the Magnetic Field Strength [tex]\( B \)[/tex]
Given for particle [tex]\( q_1 \)[/tex]:
- Charge, [tex]\( q_1 = 2.7 \mu C = 2.7 \times 10^{-6} \)[/tex] C
- Velocity, [tex]\( v_1 = 773 \)[/tex] m/s
- Magnetic force, [tex]\( F_1 = 5.75 \times 10^{-3} \)[/tex] N
The magnetic force on a particle moving perpendicular to a magnetic field is given by:
[tex]\[ F = q \cdot v \cdot B \][/tex]
Rearranging to solve for [tex]\( B \)[/tex]:
[tex]\[ B = \frac{F_1}{q_1 \cdot v_1} \][/tex]
Substituting the known values:
[tex]\[ B = \frac{5.75 \times 10^{-3}}{2.7 \times 10^{-6} \cdot 773} \][/tex]
After simplifying:
[tex]\[ B \approx 2.755 \, T \][/tex]
Thus, the strength of the magnetic field [tex]\( B \)[/tex] is approximately [tex]\( 2.755 \)[/tex] Tesla.
### Step 2: Calculate the Magnetic Force on Particle [tex]\( q_2 \)[/tex]
Given for particle [tex]\( q_2 \)[/tex]:
- Charge, [tex]\( q_2 = 42.0 \mu C = 42.0 \times 10^{-6} \)[/tex] C
- Velocity, [tex]\( v_2 = 1.21 \times 10^3 \)[/tex] m/s
Using the magnetic field strength we found, [tex]\( B = 2.755 \)[/tex] T, we can now find the magnetic force on [tex]\( q_2 \)[/tex] using the formula:
[tex]\[ F_2 = q_2 \cdot v_2 \cdot B \][/tex]
Substituting the known values:
[tex]\[ F_2 = (42.0 \times 10^{-6}) \cdot (1.21 \times 10^3) \cdot 2.755 \][/tex]
After simplifying:
[tex]\[ F_2 \approx 0.14 \, N \][/tex]
Thus, the magnetic force exerted on particle [tex]\( q_2 \)[/tex] is approximately [tex]\( 0.14 \)[/tex] Newtons.
1. Determine the strength of the magnetic field, [tex]\( B \)[/tex].
2. Use this magnetic field strength to find the magnetic force on the second particle.
### Step 1: Calculate the Magnetic Field Strength [tex]\( B \)[/tex]
Given for particle [tex]\( q_1 \)[/tex]:
- Charge, [tex]\( q_1 = 2.7 \mu C = 2.7 \times 10^{-6} \)[/tex] C
- Velocity, [tex]\( v_1 = 773 \)[/tex] m/s
- Magnetic force, [tex]\( F_1 = 5.75 \times 10^{-3} \)[/tex] N
The magnetic force on a particle moving perpendicular to a magnetic field is given by:
[tex]\[ F = q \cdot v \cdot B \][/tex]
Rearranging to solve for [tex]\( B \)[/tex]:
[tex]\[ B = \frac{F_1}{q_1 \cdot v_1} \][/tex]
Substituting the known values:
[tex]\[ B = \frac{5.75 \times 10^{-3}}{2.7 \times 10^{-6} \cdot 773} \][/tex]
After simplifying:
[tex]\[ B \approx 2.755 \, T \][/tex]
Thus, the strength of the magnetic field [tex]\( B \)[/tex] is approximately [tex]\( 2.755 \)[/tex] Tesla.
### Step 2: Calculate the Magnetic Force on Particle [tex]\( q_2 \)[/tex]
Given for particle [tex]\( q_2 \)[/tex]:
- Charge, [tex]\( q_2 = 42.0 \mu C = 42.0 \times 10^{-6} \)[/tex] C
- Velocity, [tex]\( v_2 = 1.21 \times 10^3 \)[/tex] m/s
Using the magnetic field strength we found, [tex]\( B = 2.755 \)[/tex] T, we can now find the magnetic force on [tex]\( q_2 \)[/tex] using the formula:
[tex]\[ F_2 = q_2 \cdot v_2 \cdot B \][/tex]
Substituting the known values:
[tex]\[ F_2 = (42.0 \times 10^{-6}) \cdot (1.21 \times 10^3) \cdot 2.755 \][/tex]
After simplifying:
[tex]\[ F_2 \approx 0.14 \, N \][/tex]
Thus, the magnetic force exerted on particle [tex]\( q_2 \)[/tex] is approximately [tex]\( 0.14 \)[/tex] Newtons.
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. Your search for solutions ends at IDNLearn.com. Thank you for visiting, and we look forward to helping you again.