Connect with a community of experts and enthusiasts on IDNLearn.com. Ask your questions and receive prompt, detailed answers from our experienced and knowledgeable community members.
Sagot :
Certainly! Let's solve the problem step-by-step to find the unit tangent vector [tex]\( T(t) \)[/tex] and the unit normal vector [tex]\( N(t) \)[/tex] for the given vector function:
[tex]\[ r(t) = \langle 4t^2, \sin(t) - t \cos(t), \cos(t) + t \sin(t) \rangle, \quad t > 0. \][/tex]
### Step 1: Find the Derivative [tex]\( r'(t) \)[/tex]
First, we need to find the derivative of [tex]\( r(t) \)[/tex] with respect to [tex]\( t \)[/tex]:
[tex]\[ r'(t) = \langle \frac{d}{dt}(4t^2), \frac{d}{dt}(\sin(t) - t\cos(t)), \frac{d}{dt}(\cos(t) + t\sin(t)) \rangle. \][/tex]
Calculate each component:
[tex]\[ \frac{d}{dt}(4t^2) = 8t, \][/tex]
[tex]\[ \frac{d}{dt}(\sin(t) - t\cos(t)) = \cos(t) - (\cos(t) - t\sin(t)) = t\sin(t), \][/tex]
[tex]\[ \frac{d}{dt}(\cos(t) + t\sin(t)) = -\sin(t) + (\sin(t) + t\cos(t)) = t\cos(t). \][/tex]
Therefore:
[tex]\[ r'(t) = \langle 8t, t\sin(t), t\cos(t) \rangle. \][/tex]
### Step 2: Find the Magnitude of [tex]\( r'(t) \)[/tex]
Next, we find the magnitude (norm) of [tex]\( r'(t) \)[/tex]:
[tex]\[ \| r'(t) \| = \sqrt{(8t)^2 + (t\sin(t))^2 + (t\cos(t))^2}. \][/tex]
Simplify inside the square root:
[tex]\[ \| r'(t) \| = \sqrt{64t^2 + t^2\sin^2(t) + t^2\cos^2(t)}. \][/tex]
Use the Pythagorean identity [tex]\(\sin^2(t) + \cos^2(t) = 1\)[/tex]:
[tex]\[ \| r'(t) \| = \sqrt{64t^2 + t^2}. \][/tex]
Combine like terms:
[tex]\[ \| r'(t) \| = \sqrt{65t^2} = t\sqrt{65}. \][/tex]
### Step 3: Find the Unit Tangent Vector [tex]\( T(t) \)[/tex]
The unit tangent vector [tex]\( T(t) \)[/tex] is given by:
[tex]\[ T(t) = \frac{r'(t)}{\| r'(t) \|}. \][/tex]
Substitute [tex]\( r'(t) \)[/tex] and [tex]\( \| r'(t) \| \)[/tex]:
[tex]\[ T(t) = \frac{\langle 8t, t\sin(t), t\cos(t) \rangle}{t\sqrt{65}}. \][/tex]
Simplify the components:
[tex]\[ T(t) = \langle \frac{8t}{t\sqrt{65}}, \frac{t\sin(t)}{t\sqrt{65}}, \frac{t\cos(t)}{t\sqrt{65}} \rangle = \langle \frac{8}{\sqrt{65}}, \frac{\sin(t)}{\sqrt{65}}, \frac{\cos(t)}{\sqrt{65}} \rangle. \][/tex]
### Step 4: Find the Derivative of the Unit Tangent Vector [tex]\( T'(t) \)[/tex]
Find the derivative of [tex]\( T(t) \)[/tex] with respect to [tex]\( t \)[/tex]:
[tex]\[ T'(t) = \left\langle \frac{d}{dt} \left( \frac{8}{\sqrt{65}} \right), \frac{d}{dt} \left( \frac{\sin(t)}{\sqrt{65}} \right), \frac{d}{dt} \left( \frac{\cos(t)}{\sqrt{65}} \right) \right\rangle. \][/tex]
Since [tex]\(\frac{8}{\sqrt{65}}\)[/tex] is a constant:
[tex]\[ \frac{d}{dt} \left( \frac{8}{\sqrt{65}} \right) = 0, \][/tex]
[tex]\[ \frac{d}{dt} \left( \frac{\sin(t)}{\sqrt{65}} \right) = \frac{\cos(t)}{\sqrt{65}}, \][/tex]
[tex]\[ \frac{d}{dt} \left( \frac{\cos(t)}{\sqrt{65}} \right) = \frac{-\sin(t)}{\sqrt{65}}. \][/tex]
So,
[tex]\[ T'(t) = \left\langle 0, \frac{\cos(t)}{\sqrt{65}}, \frac{-\sin(t)}{\sqrt{65}} \right\rangle. \][/tex]
### Step 5: Find the Magnitude of [tex]\( T'(t) \)[/tex]
Calculate the magnitude of [tex]\( T'(t) \)[/tex]:
[tex]\[ \| T'(t) \| = \sqrt{0^2 + \left( \frac{\cos(t)}{\sqrt{65}} \right)^2 + \left( \frac{-\sin(t)}{\sqrt{65}} \right)^2}. \][/tex]
Simplify inside the square root:
[tex]\[ \| T'(t) \| = \sqrt{0 + \frac{\cos^2(t)}{65} + \frac{\sin^2(t)}{65}}. \][/tex]
Use the Pythagorean identity again:
[tex]\[ \| T'(t) \| = \sqrt{\frac{\cos^2(t) + \sin^2(t)}{65}} = \sqrt{\frac{1}{65}} = \frac{1}{\sqrt{65}}. \][/tex]
### Step 6: Find the Unit Normal Vector [tex]\( N(t) \)[/tex]
The unit normal vector [tex]\( N(t) \)[/tex] is given by:
[tex]\[ N(t) = \frac{T'(t)}{\| T'(t) \|}. \][/tex]
Substitute [tex]\( T'(t) \)[/tex] and [tex]\( \| T'(t) \| \)[/tex]:
[tex]\[ N(t) = \frac{\left\langle 0, \frac{\cos(t)}{\sqrt{65}}, \frac{-\sin(t)}{\sqrt{65}} \right\rangle}{\frac{1}{\sqrt{65}}}. \][/tex]
Simplify:
[tex]\[ N(t) = \left\langle 0 \cdot \sqrt{65}, \frac{\cos(t)}{\sqrt{65}} \cdot \sqrt{65}, \frac{-\sin(t)}{\sqrt{65}} \cdot \sqrt{65} \right\rangle = \langle 0, \cos(t), -\sin(t) \rangle. \][/tex]
### Summary
To summarize, we have:
[tex]\[ T(t) = \langle \frac{8}{\sqrt{65}}, \frac{\sin(t)}{\sqrt{65}}, \frac{\cos(t)}{\sqrt{65}} \rangle, \][/tex]
[tex]\[ N(t) = \langle 0, \cos(t), -\sin(t) \rangle. \][/tex]
[tex]\[ r(t) = \langle 4t^2, \sin(t) - t \cos(t), \cos(t) + t \sin(t) \rangle, \quad t > 0. \][/tex]
### Step 1: Find the Derivative [tex]\( r'(t) \)[/tex]
First, we need to find the derivative of [tex]\( r(t) \)[/tex] with respect to [tex]\( t \)[/tex]:
[tex]\[ r'(t) = \langle \frac{d}{dt}(4t^2), \frac{d}{dt}(\sin(t) - t\cos(t)), \frac{d}{dt}(\cos(t) + t\sin(t)) \rangle. \][/tex]
Calculate each component:
[tex]\[ \frac{d}{dt}(4t^2) = 8t, \][/tex]
[tex]\[ \frac{d}{dt}(\sin(t) - t\cos(t)) = \cos(t) - (\cos(t) - t\sin(t)) = t\sin(t), \][/tex]
[tex]\[ \frac{d}{dt}(\cos(t) + t\sin(t)) = -\sin(t) + (\sin(t) + t\cos(t)) = t\cos(t). \][/tex]
Therefore:
[tex]\[ r'(t) = \langle 8t, t\sin(t), t\cos(t) \rangle. \][/tex]
### Step 2: Find the Magnitude of [tex]\( r'(t) \)[/tex]
Next, we find the magnitude (norm) of [tex]\( r'(t) \)[/tex]:
[tex]\[ \| r'(t) \| = \sqrt{(8t)^2 + (t\sin(t))^2 + (t\cos(t))^2}. \][/tex]
Simplify inside the square root:
[tex]\[ \| r'(t) \| = \sqrt{64t^2 + t^2\sin^2(t) + t^2\cos^2(t)}. \][/tex]
Use the Pythagorean identity [tex]\(\sin^2(t) + \cos^2(t) = 1\)[/tex]:
[tex]\[ \| r'(t) \| = \sqrt{64t^2 + t^2}. \][/tex]
Combine like terms:
[tex]\[ \| r'(t) \| = \sqrt{65t^2} = t\sqrt{65}. \][/tex]
### Step 3: Find the Unit Tangent Vector [tex]\( T(t) \)[/tex]
The unit tangent vector [tex]\( T(t) \)[/tex] is given by:
[tex]\[ T(t) = \frac{r'(t)}{\| r'(t) \|}. \][/tex]
Substitute [tex]\( r'(t) \)[/tex] and [tex]\( \| r'(t) \| \)[/tex]:
[tex]\[ T(t) = \frac{\langle 8t, t\sin(t), t\cos(t) \rangle}{t\sqrt{65}}. \][/tex]
Simplify the components:
[tex]\[ T(t) = \langle \frac{8t}{t\sqrt{65}}, \frac{t\sin(t)}{t\sqrt{65}}, \frac{t\cos(t)}{t\sqrt{65}} \rangle = \langle \frac{8}{\sqrt{65}}, \frac{\sin(t)}{\sqrt{65}}, \frac{\cos(t)}{\sqrt{65}} \rangle. \][/tex]
### Step 4: Find the Derivative of the Unit Tangent Vector [tex]\( T'(t) \)[/tex]
Find the derivative of [tex]\( T(t) \)[/tex] with respect to [tex]\( t \)[/tex]:
[tex]\[ T'(t) = \left\langle \frac{d}{dt} \left( \frac{8}{\sqrt{65}} \right), \frac{d}{dt} \left( \frac{\sin(t)}{\sqrt{65}} \right), \frac{d}{dt} \left( \frac{\cos(t)}{\sqrt{65}} \right) \right\rangle. \][/tex]
Since [tex]\(\frac{8}{\sqrt{65}}\)[/tex] is a constant:
[tex]\[ \frac{d}{dt} \left( \frac{8}{\sqrt{65}} \right) = 0, \][/tex]
[tex]\[ \frac{d}{dt} \left( \frac{\sin(t)}{\sqrt{65}} \right) = \frac{\cos(t)}{\sqrt{65}}, \][/tex]
[tex]\[ \frac{d}{dt} \left( \frac{\cos(t)}{\sqrt{65}} \right) = \frac{-\sin(t)}{\sqrt{65}}. \][/tex]
So,
[tex]\[ T'(t) = \left\langle 0, \frac{\cos(t)}{\sqrt{65}}, \frac{-\sin(t)}{\sqrt{65}} \right\rangle. \][/tex]
### Step 5: Find the Magnitude of [tex]\( T'(t) \)[/tex]
Calculate the magnitude of [tex]\( T'(t) \)[/tex]:
[tex]\[ \| T'(t) \| = \sqrt{0^2 + \left( \frac{\cos(t)}{\sqrt{65}} \right)^2 + \left( \frac{-\sin(t)}{\sqrt{65}} \right)^2}. \][/tex]
Simplify inside the square root:
[tex]\[ \| T'(t) \| = \sqrt{0 + \frac{\cos^2(t)}{65} + \frac{\sin^2(t)}{65}}. \][/tex]
Use the Pythagorean identity again:
[tex]\[ \| T'(t) \| = \sqrt{\frac{\cos^2(t) + \sin^2(t)}{65}} = \sqrt{\frac{1}{65}} = \frac{1}{\sqrt{65}}. \][/tex]
### Step 6: Find the Unit Normal Vector [tex]\( N(t) \)[/tex]
The unit normal vector [tex]\( N(t) \)[/tex] is given by:
[tex]\[ N(t) = \frac{T'(t)}{\| T'(t) \|}. \][/tex]
Substitute [tex]\( T'(t) \)[/tex] and [tex]\( \| T'(t) \| \)[/tex]:
[tex]\[ N(t) = \frac{\left\langle 0, \frac{\cos(t)}{\sqrt{65}}, \frac{-\sin(t)}{\sqrt{65}} \right\rangle}{\frac{1}{\sqrt{65}}}. \][/tex]
Simplify:
[tex]\[ N(t) = \left\langle 0 \cdot \sqrt{65}, \frac{\cos(t)}{\sqrt{65}} \cdot \sqrt{65}, \frac{-\sin(t)}{\sqrt{65}} \cdot \sqrt{65} \right\rangle = \langle 0, \cos(t), -\sin(t) \rangle. \][/tex]
### Summary
To summarize, we have:
[tex]\[ T(t) = \langle \frac{8}{\sqrt{65}}, \frac{\sin(t)}{\sqrt{65}}, \frac{\cos(t)}{\sqrt{65}} \rangle, \][/tex]
[tex]\[ N(t) = \langle 0, \cos(t), -\sin(t) \rangle. \][/tex]
We appreciate your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Trust IDNLearn.com for all your queries. We appreciate your visit and hope to assist you again soon.