IDNLearn.com: Your go-to resource for finding precise and accurate answers. Get the information you need from our community of experts, who provide detailed and trustworthy answers.
Sagot :
Let's start by calculating the unit tangent vector [tex]\( T(t) \)[/tex] and the unit normal vector [tex]\( N(t) \)[/tex] for the given vector function [tex]\( r(t) = \langle t, t^2, 4 \rangle \)[/tex].
### Part (a): Finding the Unit Tangent Vector [tex]\( T(t) \)[/tex]
First, we need to find the first derivative of [tex]\( r(t) \)[/tex], which we'll denote as [tex]\( r'(t) \)[/tex]:
[tex]\[ r'(t) = \frac{d}{dt} \langle t, t^2, 4 \rangle = \langle 1, 2t, 0 \rangle \][/tex]
Next, we compute the magnitude of [tex]\( r'(t) \)[/tex]:
[tex]\[ |r'(t)| = \sqrt{1^2 + (2t)^2 + 0^2} = \sqrt{1 + 4t^2} \][/tex]
The unit tangent vector [tex]\( T(t) \)[/tex] is then given by normalizing [tex]\( r'(t) \)[/tex]:
[tex]\[ T(t) = \frac{r'(t)}{|r'(t)|} = \frac{\langle 1, 2t, 0 \rangle}{\sqrt{1 + 4t^2}} = \left\langle \frac{1}{\sqrt{1 + 4t^2}}, \frac{2t}{\sqrt{1 + 4t^2}}, 0 \right\rangle \][/tex]
So, we have:
[tex]\[ T(t) = \left\langle \frac{1}{\sqrt{1 + 4t^2}}, \frac{2t}{\sqrt{1 + 4t^2}}, 0 \right\rangle \][/tex]
### Part (b): Finding the Unit Normal Vector [tex]\( N(t) \)[/tex]
Now, we need to find the second derivative of [tex]\( r(t) \)[/tex], which we'll denote as [tex]\( r''(t) \)[/tex]:
[tex]\[ r''(t) = \frac{d}{dt} r'(t) = \frac{d}{dt} \langle 1, 2t, 0 \rangle = \langle 0, 2, 0 \rangle \][/tex]
To find the unit normal vector [tex]\( N(t) \)[/tex], we need to project [tex]\( r''(t) \)[/tex] onto the unit tangent vector [tex]\( T(t) \)[/tex] and then subtract this projection from [tex]\( r''(t) \)[/tex] to get the normal component.
First, we compute the dot product [tex]\( T(t) \cdot r''(t) \)[/tex]:
[tex]\[ T(t) \cdot r''(t) = \left\langle \frac{1}{\sqrt{1 + 4t^2}}, \frac{2t}{\sqrt{1 + 4t^2}}, 0 \right\rangle \cdot \langle 0, 2, 0 \rangle = \frac{2t}{\sqrt{1 + 4t^2}} \times 2 = \frac{4t}{\sqrt{1 + 4t^2}} \][/tex]
Now, we calculate the projection of [tex]\( r''(t) \)[/tex] onto [tex]\( T(t) \)[/tex]:
[tex]\[ \text{Projection} = \left( \frac{4t}{\sqrt{1 + 4t^2}} \right) T(t) = \left( \frac{4t}{\sqrt{1 + 4t^2}} \right) \left\langle \frac{1}{\sqrt{1 + 4t^2}}, \frac{2t}{\sqrt{1 + 4t^2}}, 0 \right\rangle \][/tex]
[tex]\[ = \left\langle \frac{4t}{(1 + 4t^2)}, \frac{8t^2}{(1 + 4t^2)}, 0 \right\rangle \][/tex]
The normal component of [tex]\( r''(t) \)[/tex] is then:
[tex]\[ \text{Normal Component} = r''(t) - \text{Projection} = \langle 0, 2, 0 \rangle - \left\langle \frac{4t}{(1 + 4t^2)}, \frac{8t^2}{(1 + 4t^2)}, 0 \right\rangle = \left\langle -\frac{4t}{1 + 4t^2}, 2 - \frac{8t^2}{1 + 4t^2}, 0 \right\rangle \][/tex]
Simplify the components:
[tex]\[ \text{Normal Component} = \left\langle -\frac{4t}{1 + 4t^2}, \frac{2(1 + 4t^2) - 8t^2}{1 + 4t^2}, 0 \right\rangle = \left\langle -\frac{4t}{1 + 4t^2}, \frac{2 + 8t^2 - 8t^2}{1 + 4t^2}, 0 \right\rangle = \left\langle -\frac{4t}{1 + 4t^2}, \frac{2}{1 + 4t^2}, 0 \right\rangle \][/tex]
Next, we compute the magnitude of the normal component:
[tex]\[ |\text{Normal Component}| = \sqrt{ \left( -\frac{4t}{1 + 4t^2} \right)^2 + \left( \frac{2}{1 + 4t^2} \right)^2 + 0^2 } \][/tex]
[tex]\[ = \sqrt{ \frac{16t^2}{(1 + 4t^2)^2} + \frac{4}{(1 + 4t^2)^2} } = \sqrt{ \frac{16t^2 + 4}{(1 + 4t^2)^2} } = \sqrt{ \frac{4(4t^2 + 1)}{(1 + 4t^2)^2} } = \frac{2 \sqrt{4t^2 + 1}}{1 + 4t^2} \][/tex]
Finally, we normalize the normal component to get the unit normal vector [tex]\( N(t) \)[/tex]:
[tex]\[ N(t) = \frac{\left\langle -\frac{4t}{1 + 4t^2}, \frac{2}{1 + 4t^2}, 0 \right\rangle}{\frac{2 \sqrt{4t^2 + 1}}{1 + 4t^2}} = \left\langle -\frac{4t}{(1 + 4t^2) \cdot \frac{2 \sqrt{4t^2 + 1}}{1 + 4t^2}}, \frac{2}{(1 + 4t^2) \cdot \frac{2 \sqrt{4t^2 + 1}}{1 + 4t^2}}, 0 \right\rangle \][/tex]
[tex]\[ = \left\langle -\frac{4t}{2 \sqrt{4t^2 + 1}}, \frac{2}{2 \sqrt{4t^2 + 1}}, 0 \right\rangle = \left\langle -\frac{4t}{2 \sqrt{4t^2 + 1}}, \frac{1}{\sqrt{4t^2 + 1}}, 0 \right\rangle \][/tex]
[tex]\[ = \left\langle -\frac{4t}{2 \sqrt{4t^2 + 1}}, \frac{2}{2 \sqrt{4t^2 + 1}}, 0 \right\rangle \][/tex]
Thus, we have:
[tex]\[ N(t) = \left\langle -\frac{4t}{(4t^2 + 1)\sqrt{\left(\frac{16t^2}{(4t^2 +1)^2}\right)+ \left(\frac{2 - 8t^2}{4t^2+1}\right)}}, \frac{2 - 8t^2}{(4t^2 + 1)\sqrt{\left(\frac{16t^2}{(4t^2 +1)^2}\right)+ \left(\frac{2 - 8t^2}{4t^2 +1}\right)}}, 0 \right\rangle]\][/tex]
So, the unit normal vector N(t)=
[tex]\[ [ -4t/((4t^{2}+1)\sqrt{16t^{2}/(4t^{2}+1)^{2} + ( -8t^{2}/(4t^{2} +1)+2)^{2}}), \ ( -8t^{2}/(4t^{2}+1)+2)/\sqrt{16t^{2} /(4t^{2} +1)^{2}+(-8t^{2}/4t^{2} +1)^{2}}, \ 0 \][/tex]
Now, we have the unit tangent vector [tex]\(T(t)\)[/tex] and the unit normal vector[tex]\(N(t)\)[/tex]:
[tex]\[ \begin {array}{l} T(t)=\left \langle \frac{1} {\sqrt {4t^{2}+1}}, \ \frac {2t}{\sqrt {4t^{2}+1}}, \ 0 \right \rangle \\ \\ N(t )=[-4t/((4t^{2}+1)\sqrt{16t^{2} /(4t^{2} +1)^{2} + (-8t^{2}/4t^{2}+1) + 2)^{2 }), \ ( -8t^{2}/(4t^{2}+1)+2) /\sqrt{(4t^{2}+2)+ \left ((-8t^{2})^2 \right) }/(4t^{2}+1)), 0] \\ \][/tex]
### Part (a): Finding the Unit Tangent Vector [tex]\( T(t) \)[/tex]
First, we need to find the first derivative of [tex]\( r(t) \)[/tex], which we'll denote as [tex]\( r'(t) \)[/tex]:
[tex]\[ r'(t) = \frac{d}{dt} \langle t, t^2, 4 \rangle = \langle 1, 2t, 0 \rangle \][/tex]
Next, we compute the magnitude of [tex]\( r'(t) \)[/tex]:
[tex]\[ |r'(t)| = \sqrt{1^2 + (2t)^2 + 0^2} = \sqrt{1 + 4t^2} \][/tex]
The unit tangent vector [tex]\( T(t) \)[/tex] is then given by normalizing [tex]\( r'(t) \)[/tex]:
[tex]\[ T(t) = \frac{r'(t)}{|r'(t)|} = \frac{\langle 1, 2t, 0 \rangle}{\sqrt{1 + 4t^2}} = \left\langle \frac{1}{\sqrt{1 + 4t^2}}, \frac{2t}{\sqrt{1 + 4t^2}}, 0 \right\rangle \][/tex]
So, we have:
[tex]\[ T(t) = \left\langle \frac{1}{\sqrt{1 + 4t^2}}, \frac{2t}{\sqrt{1 + 4t^2}}, 0 \right\rangle \][/tex]
### Part (b): Finding the Unit Normal Vector [tex]\( N(t) \)[/tex]
Now, we need to find the second derivative of [tex]\( r(t) \)[/tex], which we'll denote as [tex]\( r''(t) \)[/tex]:
[tex]\[ r''(t) = \frac{d}{dt} r'(t) = \frac{d}{dt} \langle 1, 2t, 0 \rangle = \langle 0, 2, 0 \rangle \][/tex]
To find the unit normal vector [tex]\( N(t) \)[/tex], we need to project [tex]\( r''(t) \)[/tex] onto the unit tangent vector [tex]\( T(t) \)[/tex] and then subtract this projection from [tex]\( r''(t) \)[/tex] to get the normal component.
First, we compute the dot product [tex]\( T(t) \cdot r''(t) \)[/tex]:
[tex]\[ T(t) \cdot r''(t) = \left\langle \frac{1}{\sqrt{1 + 4t^2}}, \frac{2t}{\sqrt{1 + 4t^2}}, 0 \right\rangle \cdot \langle 0, 2, 0 \rangle = \frac{2t}{\sqrt{1 + 4t^2}} \times 2 = \frac{4t}{\sqrt{1 + 4t^2}} \][/tex]
Now, we calculate the projection of [tex]\( r''(t) \)[/tex] onto [tex]\( T(t) \)[/tex]:
[tex]\[ \text{Projection} = \left( \frac{4t}{\sqrt{1 + 4t^2}} \right) T(t) = \left( \frac{4t}{\sqrt{1 + 4t^2}} \right) \left\langle \frac{1}{\sqrt{1 + 4t^2}}, \frac{2t}{\sqrt{1 + 4t^2}}, 0 \right\rangle \][/tex]
[tex]\[ = \left\langle \frac{4t}{(1 + 4t^2)}, \frac{8t^2}{(1 + 4t^2)}, 0 \right\rangle \][/tex]
The normal component of [tex]\( r''(t) \)[/tex] is then:
[tex]\[ \text{Normal Component} = r''(t) - \text{Projection} = \langle 0, 2, 0 \rangle - \left\langle \frac{4t}{(1 + 4t^2)}, \frac{8t^2}{(1 + 4t^2)}, 0 \right\rangle = \left\langle -\frac{4t}{1 + 4t^2}, 2 - \frac{8t^2}{1 + 4t^2}, 0 \right\rangle \][/tex]
Simplify the components:
[tex]\[ \text{Normal Component} = \left\langle -\frac{4t}{1 + 4t^2}, \frac{2(1 + 4t^2) - 8t^2}{1 + 4t^2}, 0 \right\rangle = \left\langle -\frac{4t}{1 + 4t^2}, \frac{2 + 8t^2 - 8t^2}{1 + 4t^2}, 0 \right\rangle = \left\langle -\frac{4t}{1 + 4t^2}, \frac{2}{1 + 4t^2}, 0 \right\rangle \][/tex]
Next, we compute the magnitude of the normal component:
[tex]\[ |\text{Normal Component}| = \sqrt{ \left( -\frac{4t}{1 + 4t^2} \right)^2 + \left( \frac{2}{1 + 4t^2} \right)^2 + 0^2 } \][/tex]
[tex]\[ = \sqrt{ \frac{16t^2}{(1 + 4t^2)^2} + \frac{4}{(1 + 4t^2)^2} } = \sqrt{ \frac{16t^2 + 4}{(1 + 4t^2)^2} } = \sqrt{ \frac{4(4t^2 + 1)}{(1 + 4t^2)^2} } = \frac{2 \sqrt{4t^2 + 1}}{1 + 4t^2} \][/tex]
Finally, we normalize the normal component to get the unit normal vector [tex]\( N(t) \)[/tex]:
[tex]\[ N(t) = \frac{\left\langle -\frac{4t}{1 + 4t^2}, \frac{2}{1 + 4t^2}, 0 \right\rangle}{\frac{2 \sqrt{4t^2 + 1}}{1 + 4t^2}} = \left\langle -\frac{4t}{(1 + 4t^2) \cdot \frac{2 \sqrt{4t^2 + 1}}{1 + 4t^2}}, \frac{2}{(1 + 4t^2) \cdot \frac{2 \sqrt{4t^2 + 1}}{1 + 4t^2}}, 0 \right\rangle \][/tex]
[tex]\[ = \left\langle -\frac{4t}{2 \sqrt{4t^2 + 1}}, \frac{2}{2 \sqrt{4t^2 + 1}}, 0 \right\rangle = \left\langle -\frac{4t}{2 \sqrt{4t^2 + 1}}, \frac{1}{\sqrt{4t^2 + 1}}, 0 \right\rangle \][/tex]
[tex]\[ = \left\langle -\frac{4t}{2 \sqrt{4t^2 + 1}}, \frac{2}{2 \sqrt{4t^2 + 1}}, 0 \right\rangle \][/tex]
Thus, we have:
[tex]\[ N(t) = \left\langle -\frac{4t}{(4t^2 + 1)\sqrt{\left(\frac{16t^2}{(4t^2 +1)^2}\right)+ \left(\frac{2 - 8t^2}{4t^2+1}\right)}}, \frac{2 - 8t^2}{(4t^2 + 1)\sqrt{\left(\frac{16t^2}{(4t^2 +1)^2}\right)+ \left(\frac{2 - 8t^2}{4t^2 +1}\right)}}, 0 \right\rangle]\][/tex]
So, the unit normal vector N(t)=
[tex]\[ [ -4t/((4t^{2}+1)\sqrt{16t^{2}/(4t^{2}+1)^{2} + ( -8t^{2}/(4t^{2} +1)+2)^{2}}), \ ( -8t^{2}/(4t^{2}+1)+2)/\sqrt{16t^{2} /(4t^{2} +1)^{2}+(-8t^{2}/4t^{2} +1)^{2}}, \ 0 \][/tex]
Now, we have the unit tangent vector [tex]\(T(t)\)[/tex] and the unit normal vector[tex]\(N(t)\)[/tex]:
[tex]\[ \begin {array}{l} T(t)=\left \langle \frac{1} {\sqrt {4t^{2}+1}}, \ \frac {2t}{\sqrt {4t^{2}+1}}, \ 0 \right \rangle \\ \\ N(t )=[-4t/((4t^{2}+1)\sqrt{16t^{2} /(4t^{2} +1)^{2} + (-8t^{2}/4t^{2}+1) + 2)^{2 }), \ ( -8t^{2}/(4t^{2}+1)+2) /\sqrt{(4t^{2}+2)+ \left ((-8t^{2})^2 \right) }/(4t^{2}+1)), 0] \\ \][/tex]
We greatly appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. Discover the answers you need at IDNLearn.com. Thanks for visiting, and come back soon for more valuable insights.