Join the IDNLearn.com community and get your questions answered by knowledgeable individuals. Discover reliable and timely information on any topic from our network of experienced professionals.
Sagot :
Let's break down the detailed solution step-by-step.
### Part (a): Finding the unit tangent vector [tex]\( T(t) \)[/tex] and unit normal vector [tex]\( N(t) \)[/tex]
#### 1. Find [tex]\( r'(t) \)[/tex]
Given the vector function:
[tex]\[ r(t) = \langle t, t^2, 4 \rangle \][/tex]
Differentiate each component with respect to [tex]\( t \)[/tex]:
[tex]\[ r'(t) = \langle 1, 2t, 0 \rangle \][/tex]
#### 2. Find the magnitude of [tex]\( r'(t) \)[/tex]
[tex]\[ |r'(t)| = \sqrt{1^2 + (2t)^2 + 0^2} = \sqrt{1 + 4t^2} \][/tex]
#### 3. Find the unit tangent vector [tex]\( T(t) \)[/tex]
[tex]\[ T(t) = \frac{r'(t)}{|r'(t)|} = \frac{\langle 1, 2t, 0 \rangle}{\sqrt{1 + 4t^2}} \][/tex]
So,
[tex]\[ T(t) = \left\langle \frac{1}{\sqrt{1 + 4t^2}}, \frac{2t}{\sqrt{1 + 4t^2}}, 0 \right\rangle \][/tex]
#### 4. Differentiate [tex]\( T(t) \)[/tex] to find [tex]\( T'(t) \)[/tex]
[tex]\[ T(t) = \left\langle \frac{1}{\sqrt{1 + 4t^2}}, \frac{2t}{\sqrt{1 + 4t^2}}, 0 \right\rangle \][/tex]
Differentiate each component with respect to [tex]\( t \)[/tex]:
[tex]\[ \left( \frac{1}{\sqrt{1 + 4t^2}} \right)' = -\frac{4t}{(1 + 4t^2)^{3/2}} \][/tex]
[tex]\[ \left( \frac{2t}{\sqrt{1 + 4t^2}} \right)' = \frac{2\sqrt{1 + 4t^2} - 2t \cdot \left( \frac{4t}{\sqrt{1 + 4t^2}} \right)}{(1 + 4t^2)^{3/2}} = \frac{2(1 + 4t^2) - 8t^2}{(1 + 4t^2)^{3/2}} = \frac{2 - 4t^2}{(1 + 4t^2)^{3/2}} \][/tex]
So,
[tex]\[ T'(t) = \left\langle -\frac{4t}{(1 + 4t^2)^{3/2}}, \frac{2 - 4t^2}{(1 + 4t^2)^{3/2}}, 0 \right\rangle \][/tex]
#### 5. Find the magnitude of [tex]\( T'(t) \)[/tex]
[tex]\[ |T'(t)| = \sqrt{\left( -\frac{4t}{(1 + 4t^2)^{3/2}} \right)^2 + \left( \frac{2 - 4t^2}{(1 + 4t^2)^{3/2}} \right)^2} \][/tex]
[tex]\[ |T'(t)| = \sqrt{\frac{16t^2}{(1 + 4t^2)^3} + \frac{(2 - 4t^2)^2}{(1 + 4t^2)^3}} \][/tex]
[tex]\[ |T'(t)| = \sqrt{\frac{16t^2 + (2 - 4t^2)^2}{(1 + 4t^2)^3}} \][/tex]
Simplify the numerator:
[tex]\[ (2 - 4t^2)^2 = 4 - 16t^2 + 16t^4 \][/tex]
[tex]\[ 16t^2 + 4 - 16t^2 + 16t^4 = 4 + 16t^4 \][/tex]
Therefore,
[tex]\[ |T'(t)| = \sqrt{\frac{4 + 16t^4}{(1 + 4t^2)^3}} \][/tex]
[tex]\[ |T'(t)| = \frac{\sqrt{4 + 16t^4}}{(1 + 4t^2)^{3/2}} \][/tex]
#### 6. Find the unit normal vector [tex]\( N(t) \)[/tex]
[tex]\[ N(t) = \frac{T'(t)}{|T'(t)|} \][/tex]
Using the computed values:
[tex]\[ N(t) = \frac{1}{\sqrt{4 + 16t^4}} \left\langle -4t, 2 - 4t^2, 0 \right\rangle \][/tex]
Or simplifying:
[tex]\[ N(t) = \left\langle \frac{-4t}{2 \sqrt{4t^2 + 1}}, \frac{2 - 4t^2}{2 \sqrt{4t^2 + 1}}, 0 \right\rangle \][/tex]
So the unit tangent and normal vectors are:
[tex]\[ T(t) = \left\langle \frac{1}{\sqrt{1 + 4t^2}}, \frac{2t}{\sqrt{1 + 4t^2}}, 0 \right\rangle \][/tex]
[tex]\[ N(t) = \left\langle \frac{-4t}{2 \sqrt{4t^2 + 1}}, \frac{2 - 4t^2}{2 \sqrt{4t^2 + 1}}, 0 \right\rangle \][/tex]
### Part (b): Finding the curvature [tex]\( \kappa(t) \)[/tex]
Using the formula for curvature:
[tex]\[ \kappa(t) = \frac{|T'(t)|}{|r'(t)|} \][/tex]
We already have:
[tex]\[ |T'(t)| = \sqrt{16t^2/(4t^2 + 1)^3 + (-8t^2/(4t^2 + 1)^{3/2} + 2/\sqrt(4t^2 + 1))^2} \][/tex]
[tex]\[ |r'(t)| = \sqrt{1 + 4t^2} \][/tex]
So,
[tex]\[ \kappa(t) = \frac{\sqrt{16t^2/(4t^2 + 1)^3 + (-8t^2/(4t^2 + 1)^{3/2} + 2/\sqrt(4t^2 + 1))^2}}{\sqrt{1 + 4t^2}} \][/tex]
Hence,
[tex]\[ \kappa(t) = \frac{\sqrt{16t^2/(4t^2 + 1)^3 + (-8t^2/(4t^2 + 1)^{3/2} + 2/\sqrt(4t^2 + 1))^2}}{\sqrt{4t^2 + 1}} \][/tex]
### Part (a): Finding the unit tangent vector [tex]\( T(t) \)[/tex] and unit normal vector [tex]\( N(t) \)[/tex]
#### 1. Find [tex]\( r'(t) \)[/tex]
Given the vector function:
[tex]\[ r(t) = \langle t, t^2, 4 \rangle \][/tex]
Differentiate each component with respect to [tex]\( t \)[/tex]:
[tex]\[ r'(t) = \langle 1, 2t, 0 \rangle \][/tex]
#### 2. Find the magnitude of [tex]\( r'(t) \)[/tex]
[tex]\[ |r'(t)| = \sqrt{1^2 + (2t)^2 + 0^2} = \sqrt{1 + 4t^2} \][/tex]
#### 3. Find the unit tangent vector [tex]\( T(t) \)[/tex]
[tex]\[ T(t) = \frac{r'(t)}{|r'(t)|} = \frac{\langle 1, 2t, 0 \rangle}{\sqrt{1 + 4t^2}} \][/tex]
So,
[tex]\[ T(t) = \left\langle \frac{1}{\sqrt{1 + 4t^2}}, \frac{2t}{\sqrt{1 + 4t^2}}, 0 \right\rangle \][/tex]
#### 4. Differentiate [tex]\( T(t) \)[/tex] to find [tex]\( T'(t) \)[/tex]
[tex]\[ T(t) = \left\langle \frac{1}{\sqrt{1 + 4t^2}}, \frac{2t}{\sqrt{1 + 4t^2}}, 0 \right\rangle \][/tex]
Differentiate each component with respect to [tex]\( t \)[/tex]:
[tex]\[ \left( \frac{1}{\sqrt{1 + 4t^2}} \right)' = -\frac{4t}{(1 + 4t^2)^{3/2}} \][/tex]
[tex]\[ \left( \frac{2t}{\sqrt{1 + 4t^2}} \right)' = \frac{2\sqrt{1 + 4t^2} - 2t \cdot \left( \frac{4t}{\sqrt{1 + 4t^2}} \right)}{(1 + 4t^2)^{3/2}} = \frac{2(1 + 4t^2) - 8t^2}{(1 + 4t^2)^{3/2}} = \frac{2 - 4t^2}{(1 + 4t^2)^{3/2}} \][/tex]
So,
[tex]\[ T'(t) = \left\langle -\frac{4t}{(1 + 4t^2)^{3/2}}, \frac{2 - 4t^2}{(1 + 4t^2)^{3/2}}, 0 \right\rangle \][/tex]
#### 5. Find the magnitude of [tex]\( T'(t) \)[/tex]
[tex]\[ |T'(t)| = \sqrt{\left( -\frac{4t}{(1 + 4t^2)^{3/2}} \right)^2 + \left( \frac{2 - 4t^2}{(1 + 4t^2)^{3/2}} \right)^2} \][/tex]
[tex]\[ |T'(t)| = \sqrt{\frac{16t^2}{(1 + 4t^2)^3} + \frac{(2 - 4t^2)^2}{(1 + 4t^2)^3}} \][/tex]
[tex]\[ |T'(t)| = \sqrt{\frac{16t^2 + (2 - 4t^2)^2}{(1 + 4t^2)^3}} \][/tex]
Simplify the numerator:
[tex]\[ (2 - 4t^2)^2 = 4 - 16t^2 + 16t^4 \][/tex]
[tex]\[ 16t^2 + 4 - 16t^2 + 16t^4 = 4 + 16t^4 \][/tex]
Therefore,
[tex]\[ |T'(t)| = \sqrt{\frac{4 + 16t^4}{(1 + 4t^2)^3}} \][/tex]
[tex]\[ |T'(t)| = \frac{\sqrt{4 + 16t^4}}{(1 + 4t^2)^{3/2}} \][/tex]
#### 6. Find the unit normal vector [tex]\( N(t) \)[/tex]
[tex]\[ N(t) = \frac{T'(t)}{|T'(t)|} \][/tex]
Using the computed values:
[tex]\[ N(t) = \frac{1}{\sqrt{4 + 16t^4}} \left\langle -4t, 2 - 4t^2, 0 \right\rangle \][/tex]
Or simplifying:
[tex]\[ N(t) = \left\langle \frac{-4t}{2 \sqrt{4t^2 + 1}}, \frac{2 - 4t^2}{2 \sqrt{4t^2 + 1}}, 0 \right\rangle \][/tex]
So the unit tangent and normal vectors are:
[tex]\[ T(t) = \left\langle \frac{1}{\sqrt{1 + 4t^2}}, \frac{2t}{\sqrt{1 + 4t^2}}, 0 \right\rangle \][/tex]
[tex]\[ N(t) = \left\langle \frac{-4t}{2 \sqrt{4t^2 + 1}}, \frac{2 - 4t^2}{2 \sqrt{4t^2 + 1}}, 0 \right\rangle \][/tex]
### Part (b): Finding the curvature [tex]\( \kappa(t) \)[/tex]
Using the formula for curvature:
[tex]\[ \kappa(t) = \frac{|T'(t)|}{|r'(t)|} \][/tex]
We already have:
[tex]\[ |T'(t)| = \sqrt{16t^2/(4t^2 + 1)^3 + (-8t^2/(4t^2 + 1)^{3/2} + 2/\sqrt(4t^2 + 1))^2} \][/tex]
[tex]\[ |r'(t)| = \sqrt{1 + 4t^2} \][/tex]
So,
[tex]\[ \kappa(t) = \frac{\sqrt{16t^2/(4t^2 + 1)^3 + (-8t^2/(4t^2 + 1)^{3/2} + 2/\sqrt(4t^2 + 1))^2}}{\sqrt{1 + 4t^2}} \][/tex]
Hence,
[tex]\[ \kappa(t) = \frac{\sqrt{16t^2/(4t^2 + 1)^3 + (-8t^2/(4t^2 + 1)^{3/2} + 2/\sqrt(4t^2 + 1))^2}}{\sqrt{4t^2 + 1}} \][/tex]
We appreciate your contributions to this forum. Don't forget to check back for the latest answers. Keep asking, answering, and sharing useful information. Discover the answers you need at IDNLearn.com. Thank you for visiting, and we hope to see you again for more solutions.