Find solutions to your problems with the help of IDNLearn.com's knowledgeable users. Join our community to receive prompt and reliable responses to your questions from knowledgeable professionals.
Sagot :
Certainly! Let's solve the problem step by step.
Problem: Find [tex]\( x \)[/tex] such that the distance between points [tex]\( P(5, -3) \)[/tex] and [tex]\( Q(0, 1) \)[/tex] is equal to the distance between points [tex]\( Q(0, 1) \)[/tex] and [tex]\( R(x, 6) \)[/tex].
Step-by-Step Solution:
1. Calculate the distance [tex]\( PQ \)[/tex]:
The distance [tex]\( PQ \)[/tex] between points [tex]\( P \)[/tex] and [tex]\( Q \)[/tex] is given by the Euclidean distance formula:
[tex]\[ PQ = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
Where [tex]\( P(5, -3) \)[/tex] and [tex]\( Q(0, 1) \)[/tex].
Plug in the coordinates of [tex]\( P \)[/tex] and [tex]\( Q \)[/tex]:
[tex]\[ PQ = \sqrt{(0 - 5)^2 + (1 - (-3))^2} \][/tex]
[tex]\[ PQ = \sqrt{(-5)^2 + (1 + 3)^2} \][/tex]
[tex]\[ PQ = \sqrt{25 + 16} \][/tex]
[tex]\[ PQ = \sqrt{41} \][/tex]
2. Calculate the distance [tex]\( QR \)[/tex]:
The distance [tex]\( QR \)[/tex] between points [tex]\( Q \)[/tex] and [tex]\( R \)[/tex] is also given by the Euclidean distance formula. Where [tex]\( Q(0, 1) \)[/tex] and [tex]\( R(x, 6) \)[/tex].
[tex]\[ QR = \sqrt{(x - 0)^2 + (6 - 1)^2} \][/tex]
[tex]\[ QR = \sqrt{x^2 + 5^2} \][/tex]
[tex]\[ QR = \sqrt{x^2 + 25} \][/tex]
3. Set the distances [tex]\( PQ \)[/tex] and [tex]\( QR \)[/tex] equal:
Since [tex]\( PQ = QR \)[/tex], we set the equations equal to each other:
[tex]\[ \sqrt{41} = \sqrt{x^2 + 25} \][/tex]
4. Solve for [tex]\( x \)[/tex]:
Square both sides to eliminate the square roots:
[tex]\[ (\sqrt{41})^2 = (\sqrt{x^2 + 25})^2 \][/tex]
[tex]\[ 41 = x^2 + 25 \][/tex]
Subtract 25 from both sides to isolate [tex]\( x^2 \)[/tex]:
[tex]\[ 41 - 25 = x^2 \][/tex]
[tex]\[ 16 = x^2 \][/tex]
Solve for [tex]\( x \)[/tex] by taking the square root of both sides:
[tex]\[ x = \pm \sqrt{16} \][/tex]
[tex]\[ x = \pm 4 \][/tex]
5. Verify the solution:
So, the solutions for [tex]\( x \)[/tex] are [tex]\( x = 4 \)[/tex] and [tex]\( x = -4 \)[/tex].
To ensure both solutions are valid, we can substitute them back into the distances [tex]\( PQ \)[/tex] and [tex]\( QR \)[/tex] if needed. Both [tex]\( x = 4 \)[/tex] and [tex]\( x = -4 \)[/tex] provide the correct distances that satisfy the initial condition [tex]\( PQ = QR \)[/tex].
Final Answer:
The values of [tex]\( x \)[/tex] that satisfy the condition where the distance [tex]\( PQ \)[/tex] is equal to the distance [tex]\( QR \)[/tex] are:
[tex]\[ x = 4 \quad \text{and} \quad x = -4 \][/tex]
Problem: Find [tex]\( x \)[/tex] such that the distance between points [tex]\( P(5, -3) \)[/tex] and [tex]\( Q(0, 1) \)[/tex] is equal to the distance between points [tex]\( Q(0, 1) \)[/tex] and [tex]\( R(x, 6) \)[/tex].
Step-by-Step Solution:
1. Calculate the distance [tex]\( PQ \)[/tex]:
The distance [tex]\( PQ \)[/tex] between points [tex]\( P \)[/tex] and [tex]\( Q \)[/tex] is given by the Euclidean distance formula:
[tex]\[ PQ = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
Where [tex]\( P(5, -3) \)[/tex] and [tex]\( Q(0, 1) \)[/tex].
Plug in the coordinates of [tex]\( P \)[/tex] and [tex]\( Q \)[/tex]:
[tex]\[ PQ = \sqrt{(0 - 5)^2 + (1 - (-3))^2} \][/tex]
[tex]\[ PQ = \sqrt{(-5)^2 + (1 + 3)^2} \][/tex]
[tex]\[ PQ = \sqrt{25 + 16} \][/tex]
[tex]\[ PQ = \sqrt{41} \][/tex]
2. Calculate the distance [tex]\( QR \)[/tex]:
The distance [tex]\( QR \)[/tex] between points [tex]\( Q \)[/tex] and [tex]\( R \)[/tex] is also given by the Euclidean distance formula. Where [tex]\( Q(0, 1) \)[/tex] and [tex]\( R(x, 6) \)[/tex].
[tex]\[ QR = \sqrt{(x - 0)^2 + (6 - 1)^2} \][/tex]
[tex]\[ QR = \sqrt{x^2 + 5^2} \][/tex]
[tex]\[ QR = \sqrt{x^2 + 25} \][/tex]
3. Set the distances [tex]\( PQ \)[/tex] and [tex]\( QR \)[/tex] equal:
Since [tex]\( PQ = QR \)[/tex], we set the equations equal to each other:
[tex]\[ \sqrt{41} = \sqrt{x^2 + 25} \][/tex]
4. Solve for [tex]\( x \)[/tex]:
Square both sides to eliminate the square roots:
[tex]\[ (\sqrt{41})^2 = (\sqrt{x^2 + 25})^2 \][/tex]
[tex]\[ 41 = x^2 + 25 \][/tex]
Subtract 25 from both sides to isolate [tex]\( x^2 \)[/tex]:
[tex]\[ 41 - 25 = x^2 \][/tex]
[tex]\[ 16 = x^2 \][/tex]
Solve for [tex]\( x \)[/tex] by taking the square root of both sides:
[tex]\[ x = \pm \sqrt{16} \][/tex]
[tex]\[ x = \pm 4 \][/tex]
5. Verify the solution:
So, the solutions for [tex]\( x \)[/tex] are [tex]\( x = 4 \)[/tex] and [tex]\( x = -4 \)[/tex].
To ensure both solutions are valid, we can substitute them back into the distances [tex]\( PQ \)[/tex] and [tex]\( QR \)[/tex] if needed. Both [tex]\( x = 4 \)[/tex] and [tex]\( x = -4 \)[/tex] provide the correct distances that satisfy the initial condition [tex]\( PQ = QR \)[/tex].
Final Answer:
The values of [tex]\( x \)[/tex] that satisfy the condition where the distance [tex]\( PQ \)[/tex] is equal to the distance [tex]\( QR \)[/tex] are:
[tex]\[ x = 4 \quad \text{and} \quad x = -4 \][/tex]
We value your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. For clear and precise answers, choose IDNLearn.com. Thanks for stopping by, and come back soon for more valuable insights.