Explore a wide range of topics and get answers from experts on IDNLearn.com. Get accurate and comprehensive answers to your questions from our community of knowledgeable professionals.
Sagot :
Let's tackle this problem step-by-step.
### Part (i) Finding [tex]\(\frac{u}{v}\)[/tex] in the form [tex]\(x + iy\)[/tex]:
Given:
[tex]\[ u = p + 2i \][/tex]
[tex]\[ v = 1 - 2i \][/tex]
We need to find [tex]\(\frac{u}{v}\)[/tex] and express it in the form [tex]\(x + iy\)[/tex].
First, we multiply the numerator and the denominator by the conjugate of the denominator. The conjugate of [tex]\(1 - 2i\)[/tex] is [tex]\(1 + 2i\)[/tex]:
[tex]\[ \frac{u}{v} = \frac{(p + 2i)}{(1 - 2i)} \cdot \frac{(1 + 2i)}{(1 + 2i)} \][/tex]
This simplifies to:
[tex]\[ \frac{(p + 2i)(1 + 2i)}{(1 - 2i)(1 + 2i)} \][/tex]
Now, we evaluate the denominator:
[tex]\[ (1 - 2i)(1 + 2i) = 1^2 - (2i)^2 = 1 - 4(-1) = 1 + 4 = 5 \][/tex]
Next, we evaluate the numerator using the distributive property:
[tex]\[ (p + 2i)(1 + 2i) = p \cdot 1 + p \cdot 2i + 2i \cdot 1 + 2i \cdot 2i \][/tex]
[tex]\[ = p + 2pi + 2i + 4i^2 \][/tex]
Since [tex]\(i^2 = -1\)[/tex], we have:
[tex]\[ = p + 2pi + 2i + 4(-1) \][/tex]
[tex]\[ = p + 2pi + 2i - 4 \][/tex]
[tex]\[ = (p - 4) + 2pi + 2i \][/tex]
Since both [tex]\(p\)[/tex] and [tex]\(2i\)[/tex] are real terms, they can combine:
[tex]\[ = (p - 4) + 2(p + 1)i \][/tex]
Therefore:
[tex]\[ \frac{u}{v} = \frac{(p - 4) + 2(p + 1)i}{5} \][/tex]
[tex]\[ = \frac{p - 4}{5} + \frac{2(p + 1)i}{5} \][/tex]
Thus, in the form [tex]\(x + iy\)[/tex]:
[tex]\[ x = \frac{p - 4}{5} \][/tex]
[tex]\[ y = \frac{2(p + 1)}{5} \][/tex]
### Part (ii) Given [tex]\(\left|\frac{1}{u}\right| = 13\)[/tex], find the possible values of [tex]\(p\)[/tex]:
We know that:
[tex]\[ \left|\frac{1}{u}\right| = 13 \][/tex]
We also know the magnitude of a complex number [tex]\(u = p + 2i\)[/tex] is given by:
[tex]\[ |u| = \sqrt{p^2 + 2^2} = \sqrt{p^2 + 4} \][/tex]
The magnitude of [tex]\(\frac{1}{u}\)[/tex] is:
[tex]\[ \left|\frac{1}{u}\right| = \frac{1}{|u|} = 13 \][/tex]
This implies:
[tex]\[ \frac{1}{|u|} = 13 \][/tex]
[tex]\[ |u| = \frac{1}{13} \][/tex]
Thus:
[tex]\[ \sqrt{p^2 + 4} = \frac{1}{13} \][/tex]
Squaring both sides, we get:
[tex]\[ p^2 + 4 = \left(\frac{1}{13}\right)^2 \][/tex]
[tex]\[ p^2 + 4 = \frac{1}{169} \][/tex]
Then solving for [tex]\(p^2\)[/tex]:
[tex]\[ p^2 + 4 = \frac{1}{169} \][/tex]
[tex]\[ p^2 = \frac{1}{169} - 4 \][/tex]
[tex]\[ p^2 = \frac{1}{169} - \frac{676}{169} \][/tex]
[tex]\[ p^2 = \frac{1 - 676}{169} \][/tex]
[tex]\[ p^2 = \frac{-675}{169} \][/tex]
Since the square of a number cannot be negative, there are no possible real integer solutions for [tex]\(p\)[/tex].
Hence, based on the given conditions, there are no possible integer values of [tex]\(p\)[/tex].
### Part (i) Finding [tex]\(\frac{u}{v}\)[/tex] in the form [tex]\(x + iy\)[/tex]:
Given:
[tex]\[ u = p + 2i \][/tex]
[tex]\[ v = 1 - 2i \][/tex]
We need to find [tex]\(\frac{u}{v}\)[/tex] and express it in the form [tex]\(x + iy\)[/tex].
First, we multiply the numerator and the denominator by the conjugate of the denominator. The conjugate of [tex]\(1 - 2i\)[/tex] is [tex]\(1 + 2i\)[/tex]:
[tex]\[ \frac{u}{v} = \frac{(p + 2i)}{(1 - 2i)} \cdot \frac{(1 + 2i)}{(1 + 2i)} \][/tex]
This simplifies to:
[tex]\[ \frac{(p + 2i)(1 + 2i)}{(1 - 2i)(1 + 2i)} \][/tex]
Now, we evaluate the denominator:
[tex]\[ (1 - 2i)(1 + 2i) = 1^2 - (2i)^2 = 1 - 4(-1) = 1 + 4 = 5 \][/tex]
Next, we evaluate the numerator using the distributive property:
[tex]\[ (p + 2i)(1 + 2i) = p \cdot 1 + p \cdot 2i + 2i \cdot 1 + 2i \cdot 2i \][/tex]
[tex]\[ = p + 2pi + 2i + 4i^2 \][/tex]
Since [tex]\(i^2 = -1\)[/tex], we have:
[tex]\[ = p + 2pi + 2i + 4(-1) \][/tex]
[tex]\[ = p + 2pi + 2i - 4 \][/tex]
[tex]\[ = (p - 4) + 2pi + 2i \][/tex]
Since both [tex]\(p\)[/tex] and [tex]\(2i\)[/tex] are real terms, they can combine:
[tex]\[ = (p - 4) + 2(p + 1)i \][/tex]
Therefore:
[tex]\[ \frac{u}{v} = \frac{(p - 4) + 2(p + 1)i}{5} \][/tex]
[tex]\[ = \frac{p - 4}{5} + \frac{2(p + 1)i}{5} \][/tex]
Thus, in the form [tex]\(x + iy\)[/tex]:
[tex]\[ x = \frac{p - 4}{5} \][/tex]
[tex]\[ y = \frac{2(p + 1)}{5} \][/tex]
### Part (ii) Given [tex]\(\left|\frac{1}{u}\right| = 13\)[/tex], find the possible values of [tex]\(p\)[/tex]:
We know that:
[tex]\[ \left|\frac{1}{u}\right| = 13 \][/tex]
We also know the magnitude of a complex number [tex]\(u = p + 2i\)[/tex] is given by:
[tex]\[ |u| = \sqrt{p^2 + 2^2} = \sqrt{p^2 + 4} \][/tex]
The magnitude of [tex]\(\frac{1}{u}\)[/tex] is:
[tex]\[ \left|\frac{1}{u}\right| = \frac{1}{|u|} = 13 \][/tex]
This implies:
[tex]\[ \frac{1}{|u|} = 13 \][/tex]
[tex]\[ |u| = \frac{1}{13} \][/tex]
Thus:
[tex]\[ \sqrt{p^2 + 4} = \frac{1}{13} \][/tex]
Squaring both sides, we get:
[tex]\[ p^2 + 4 = \left(\frac{1}{13}\right)^2 \][/tex]
[tex]\[ p^2 + 4 = \frac{1}{169} \][/tex]
Then solving for [tex]\(p^2\)[/tex]:
[tex]\[ p^2 + 4 = \frac{1}{169} \][/tex]
[tex]\[ p^2 = \frac{1}{169} - 4 \][/tex]
[tex]\[ p^2 = \frac{1}{169} - \frac{676}{169} \][/tex]
[tex]\[ p^2 = \frac{1 - 676}{169} \][/tex]
[tex]\[ p^2 = \frac{-675}{169} \][/tex]
Since the square of a number cannot be negative, there are no possible real integer solutions for [tex]\(p\)[/tex].
Hence, based on the given conditions, there are no possible integer values of [tex]\(p\)[/tex].
We appreciate your contributions to this forum. Don't forget to check back for the latest answers. Keep asking, answering, and sharing useful information. Your questions find answers at IDNLearn.com. Thanks for visiting, and come back for more accurate and reliable solutions.