IDNLearn.com makes it easy to find precise answers to your specific questions. Discover thorough and trustworthy answers from our community of knowledgeable professionals, tailored to meet your specific needs.
Sagot :
To solve the equation [tex]\( 5^{2x} - 20 \cdot 5^{x-1} - 5 = 0 \)[/tex], we can follow these steps:
1. Rewrite the equation in a more manageable form:
Let's make a substitution to simplify the equation. Let [tex]\( y = 5^x \)[/tex]. Then, [tex]\( 5^{2x} \)[/tex] can be written as [tex]\( (5^x)^2 = y^2 \)[/tex], and [tex]\( 5^{x-1} \)[/tex] can be written as [tex]\( \frac{5^x}{5} = \frac{y}{5} \)[/tex].
Substituting these into the equation gives:
[tex]\[ y^2 - 20 \left(\frac{y}{5}\right) - 5 = 0 \][/tex]
2. Simplify the equation:
Simplify the equation by performing the multiplication inside:
[tex]\[ y^2 - 4y - 5 = 0 \][/tex]
3. Solve the quadratic equation:
This is a standard quadratic equation in the form [tex]\( ay^2 + by + c = 0 \)[/tex]. In our case, [tex]\( a = 1 \)[/tex], [tex]\( b = -4 \)[/tex], and [tex]\( c = -5 \)[/tex]. We can solve this using the quadratic formula:
[tex]\[ y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Substituting the values of [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] into the quadratic formula gives:
[tex]\[ y = \frac{-(-4) \pm \sqrt{(-4)^2 - 4(1)(-5)}}{2(1)} \][/tex]
Simplifying inside the square root:
[tex]\[ y = \frac{4 \pm \sqrt{16 + 20}}{2} \][/tex]
[tex]\[ y = \frac{4 \pm \sqrt{36}}{2} \][/tex]
[tex]\[ y = \frac{4 \pm 6}{2} \][/tex]
This gives us two solutions for [tex]\( y \)[/tex]:
[tex]\[ y = \frac{4 + 6}{2} = \frac{10}{2} = 5 \][/tex]
[tex]\[ y = \frac{4 - 6}{2} = \frac{-2}{2} = -1 \][/tex]
4. Back-substitute [tex]\( y = 5^x \)[/tex]:
Recall that we let [tex]\( y = 5^x \)[/tex]. Thus, we have:
[tex]\[ 5^x = 5 \][/tex]
[tex]\[ 5^x = -1 \][/tex]
5. Solve for [tex]\( x \)[/tex]:
For [tex]\( 5^x = 5 \)[/tex]:
[tex]\[ x = 1 \][/tex]
For [tex]\( 5^x = -1 \)[/tex]:
[tex]\( 5^x = -1 \)[/tex] has no real solutions since [tex]\( 5^x \)[/tex] is always positive for any real [tex]\( x \)[/tex]. However, in the complex plane, we can use complex logarithms to solve it.
Recall that for any complex number [tex]\( z \)[/tex], [tex]\( z = e^{i\theta} \)[/tex], hence [tex]\( 5^x = -1 \)[/tex] can be written as:
[tex]\[ x \ln(5) = \ln(-1) \][/tex]
The natural logarithm of [tex]\(-1\)[/tex] is [tex]\( i\pi \)[/tex] (considering the principal value), thus:
[tex]\[ x \ln(5) = i\pi \][/tex]
Solving for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{i\pi}{\ln(5)} \][/tex]
Therefore, the solutions to the equation [tex]\( 5^{2x} - 20 \cdot 5^{x-1} - 5 = 0 \)[/tex] are:
[tex]\[ x = 1 \quad \text{and} \quad x = \frac{i\pi}{\ln(5)} \][/tex]
1. Rewrite the equation in a more manageable form:
Let's make a substitution to simplify the equation. Let [tex]\( y = 5^x \)[/tex]. Then, [tex]\( 5^{2x} \)[/tex] can be written as [tex]\( (5^x)^2 = y^2 \)[/tex], and [tex]\( 5^{x-1} \)[/tex] can be written as [tex]\( \frac{5^x}{5} = \frac{y}{5} \)[/tex].
Substituting these into the equation gives:
[tex]\[ y^2 - 20 \left(\frac{y}{5}\right) - 5 = 0 \][/tex]
2. Simplify the equation:
Simplify the equation by performing the multiplication inside:
[tex]\[ y^2 - 4y - 5 = 0 \][/tex]
3. Solve the quadratic equation:
This is a standard quadratic equation in the form [tex]\( ay^2 + by + c = 0 \)[/tex]. In our case, [tex]\( a = 1 \)[/tex], [tex]\( b = -4 \)[/tex], and [tex]\( c = -5 \)[/tex]. We can solve this using the quadratic formula:
[tex]\[ y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Substituting the values of [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] into the quadratic formula gives:
[tex]\[ y = \frac{-(-4) \pm \sqrt{(-4)^2 - 4(1)(-5)}}{2(1)} \][/tex]
Simplifying inside the square root:
[tex]\[ y = \frac{4 \pm \sqrt{16 + 20}}{2} \][/tex]
[tex]\[ y = \frac{4 \pm \sqrt{36}}{2} \][/tex]
[tex]\[ y = \frac{4 \pm 6}{2} \][/tex]
This gives us two solutions for [tex]\( y \)[/tex]:
[tex]\[ y = \frac{4 + 6}{2} = \frac{10}{2} = 5 \][/tex]
[tex]\[ y = \frac{4 - 6}{2} = \frac{-2}{2} = -1 \][/tex]
4. Back-substitute [tex]\( y = 5^x \)[/tex]:
Recall that we let [tex]\( y = 5^x \)[/tex]. Thus, we have:
[tex]\[ 5^x = 5 \][/tex]
[tex]\[ 5^x = -1 \][/tex]
5. Solve for [tex]\( x \)[/tex]:
For [tex]\( 5^x = 5 \)[/tex]:
[tex]\[ x = 1 \][/tex]
For [tex]\( 5^x = -1 \)[/tex]:
[tex]\( 5^x = -1 \)[/tex] has no real solutions since [tex]\( 5^x \)[/tex] is always positive for any real [tex]\( x \)[/tex]. However, in the complex plane, we can use complex logarithms to solve it.
Recall that for any complex number [tex]\( z \)[/tex], [tex]\( z = e^{i\theta} \)[/tex], hence [tex]\( 5^x = -1 \)[/tex] can be written as:
[tex]\[ x \ln(5) = \ln(-1) \][/tex]
The natural logarithm of [tex]\(-1\)[/tex] is [tex]\( i\pi \)[/tex] (considering the principal value), thus:
[tex]\[ x \ln(5) = i\pi \][/tex]
Solving for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{i\pi}{\ln(5)} \][/tex]
Therefore, the solutions to the equation [tex]\( 5^{2x} - 20 \cdot 5^{x-1} - 5 = 0 \)[/tex] are:
[tex]\[ x = 1 \quad \text{and} \quad x = \frac{i\pi}{\ln(5)} \][/tex]
Thank you for being part of this discussion. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Your questions find clarity at IDNLearn.com. Thanks for stopping by, and come back for more dependable solutions.