Join IDNLearn.com to access a wealth of knowledge and get your questions answered by experts. Discover reliable answers to your questions with our extensive database of expert knowledge.
Sagot :
To solve this problem, we will use Newton's law of universal gravitation, which states that the gravitational force [tex]\(F\)[/tex] between two masses [tex]\(m_1\)[/tex] and [tex]\(m_2\)[/tex] separated by a distance [tex]\(r\)[/tex] is given by:
[tex]\[ F = G \frac{m_1 \cdot m_2}{r^2} \][/tex]
where:
- [tex]\( G \)[/tex] is the gravitational constant, which is approximately [tex]\( 6.67430 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2} \)[/tex].
- [tex]\( m_1 \)[/tex] is the mass of the Earth, [tex]\( 6.0 \times 10^{24} \)[/tex] kg.
- [tex]\( m_2 \)[/tex] is the mass of Jupiter, [tex]\( 1.901 \times 10^{27} \)[/tex] kg.
- [tex]\( r \)[/tex] is the distance between the two planets, [tex]\( 7.5 \times 10^{11} \)[/tex] meters.
Plugging in the values into the formula, we get:
[tex]\[ F = (6.67430 \times 10^{-11}) \frac{(6.0 \times 10^{24}) \cdot (1.901 \times 10^{27})}{(7.5 \times 10^{11})^2} \][/tex]
Let's break this down step by step:
1. Multiply the masses:
[tex]\[ m_1 \cdot m_2 = (6.0 \times 10^{24}) \cdot (1.901 \times 10^{27}) \][/tex]
[tex]\[ = 1.1406 \times 10^{52} \, \text{kg}^2 \][/tex]
2. Square the distance:
[tex]\[ r^2 = (7.5 \times 10^{11})^2 \][/tex]
[tex]\[ = 5.625 \times 10^{23} \, \text{m}^2 \][/tex]
3. Divide the product of the masses by the square of the distance:
[tex]\[ \frac{m_1 \cdot m_2}{r^2} = \frac{1.1406 \times 10^{52}}{5.625 \times 10^{23}} \][/tex]
[tex]\[ = 2.0272 \times 10^{28} \, \text{kg} \cdot \text{m}^{-2} \][/tex]
4. Multiply by the gravitational constant [tex]\(G\)[/tex]:
[tex]\[ F = 6.67430 \times 10^{-11} \times 2.0272 \times 10^{28} \][/tex]
[tex]\[ = 1.3533700586666665 \times 10^{18} \, \text{newtons} \][/tex]
Thus, the force of gravity between Earth and Jupiter is approximately:
[tex]\[ 1.353 \times 10^{18} \, \text{newtons} \][/tex]
Therefore, the correct answer is:
C. [tex]\( 1.352 \times 10^{18} \)[/tex] newtons.
[tex]\[ F = G \frac{m_1 \cdot m_2}{r^2} \][/tex]
where:
- [tex]\( G \)[/tex] is the gravitational constant, which is approximately [tex]\( 6.67430 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2} \)[/tex].
- [tex]\( m_1 \)[/tex] is the mass of the Earth, [tex]\( 6.0 \times 10^{24} \)[/tex] kg.
- [tex]\( m_2 \)[/tex] is the mass of Jupiter, [tex]\( 1.901 \times 10^{27} \)[/tex] kg.
- [tex]\( r \)[/tex] is the distance between the two planets, [tex]\( 7.5 \times 10^{11} \)[/tex] meters.
Plugging in the values into the formula, we get:
[tex]\[ F = (6.67430 \times 10^{-11}) \frac{(6.0 \times 10^{24}) \cdot (1.901 \times 10^{27})}{(7.5 \times 10^{11})^2} \][/tex]
Let's break this down step by step:
1. Multiply the masses:
[tex]\[ m_1 \cdot m_2 = (6.0 \times 10^{24}) \cdot (1.901 \times 10^{27}) \][/tex]
[tex]\[ = 1.1406 \times 10^{52} \, \text{kg}^2 \][/tex]
2. Square the distance:
[tex]\[ r^2 = (7.5 \times 10^{11})^2 \][/tex]
[tex]\[ = 5.625 \times 10^{23} \, \text{m}^2 \][/tex]
3. Divide the product of the masses by the square of the distance:
[tex]\[ \frac{m_1 \cdot m_2}{r^2} = \frac{1.1406 \times 10^{52}}{5.625 \times 10^{23}} \][/tex]
[tex]\[ = 2.0272 \times 10^{28} \, \text{kg} \cdot \text{m}^{-2} \][/tex]
4. Multiply by the gravitational constant [tex]\(G\)[/tex]:
[tex]\[ F = 6.67430 \times 10^{-11} \times 2.0272 \times 10^{28} \][/tex]
[tex]\[ = 1.3533700586666665 \times 10^{18} \, \text{newtons} \][/tex]
Thus, the force of gravity between Earth and Jupiter is approximately:
[tex]\[ 1.353 \times 10^{18} \, \text{newtons} \][/tex]
Therefore, the correct answer is:
C. [tex]\( 1.352 \times 10^{18} \)[/tex] newtons.
We value your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Discover the answers you need at IDNLearn.com. Thank you for visiting, and we hope to see you again for more solutions.