IDNLearn.com: Where your questions meet expert advice and community insights. Ask anything and receive thorough, reliable answers from our community of experienced professionals.
Sagot :
Sure, let's examine the equation provided,
[tex]\[ r = 0.1 \cdot \cos \left( \pi t - \frac{3 \pi}{2} \right) \][/tex]
The equilibrium position of the pendulum is when the angle [tex]\( r \)[/tex] is 0. Therefore, we need to find the values of [tex]\( t \)[/tex] for which [tex]\( r = 0 \)[/tex].
Given:
[tex]\[ 0 = 0.1 \cdot \cos \left( \pi t - \frac{3 \pi}{2} \right) \][/tex]
This means,
[tex]\[ \cos \left( \pi t- \frac{3 \pi}{2} \right) = 0 \][/tex]
The cosine function [tex]\( \cos(\theta) = 0 \)[/tex] when [tex]\( \theta = \frac{\pi}{2} + k\pi \)[/tex], where [tex]\( k \)[/tex] is any integer. So we set the inside of the cosine function to these values:
[tex]\[ \pi t - \frac{3 \pi}{2} = \frac{\pi}{2} + k\pi \][/tex]
[tex]\[ \pi t - \frac{3 \pi}{2} = \frac{\pi}{2} + k\pi \][/tex]
Let's solve for [tex]\( t \)[/tex]:
[tex]\[ \pi t - \frac{3 \pi}{2} = \frac{\pi}{2} + k\pi \][/tex]
[tex]\[ \pi t = \frac{\pi}{2} + \frac{3 \pi}{2} + k\pi \][/tex]
[tex]\[ \pi t = \pi + k\pi \][/tex]
[tex]\[ t = 1 + k \][/tex]
The points where the pendulum is at its equilibrium position occur at:
[tex]\[ t = 1 + k \][/tex]
This can be written as:
[tex]\[ t = 1, 2, 3, 4, \ldots \][/tex]
Thus, the pendulum is at equilibrium position at [tex]\( t = 1, 2, 3, \ldots \)[/tex].
So when we plot these coordinates on a graph [tex]\( (t, r) \)[/tex]:
- At [tex]\( t = 1 \)[/tex], [tex]\( r = 0 \)[/tex]
- At [tex]\( t = 2 \)[/tex], [tex]\( r = 0 \)[/tex]
- At [tex]\( t = 3 \)[/tex], [tex]\( r = 0 \)[/tex]
- And so on...
These points can be illustrated on a graph as points along the [tex]\( t \)[/tex]-axis where [tex]\( r = 0 \)[/tex].
[tex]\[ r = 0.1 \cdot \cos \left( \pi t - \frac{3 \pi}{2} \right) \][/tex]
The equilibrium position of the pendulum is when the angle [tex]\( r \)[/tex] is 0. Therefore, we need to find the values of [tex]\( t \)[/tex] for which [tex]\( r = 0 \)[/tex].
Given:
[tex]\[ 0 = 0.1 \cdot \cos \left( \pi t - \frac{3 \pi}{2} \right) \][/tex]
This means,
[tex]\[ \cos \left( \pi t- \frac{3 \pi}{2} \right) = 0 \][/tex]
The cosine function [tex]\( \cos(\theta) = 0 \)[/tex] when [tex]\( \theta = \frac{\pi}{2} + k\pi \)[/tex], where [tex]\( k \)[/tex] is any integer. So we set the inside of the cosine function to these values:
[tex]\[ \pi t - \frac{3 \pi}{2} = \frac{\pi}{2} + k\pi \][/tex]
[tex]\[ \pi t - \frac{3 \pi}{2} = \frac{\pi}{2} + k\pi \][/tex]
Let's solve for [tex]\( t \)[/tex]:
[tex]\[ \pi t - \frac{3 \pi}{2} = \frac{\pi}{2} + k\pi \][/tex]
[tex]\[ \pi t = \frac{\pi}{2} + \frac{3 \pi}{2} + k\pi \][/tex]
[tex]\[ \pi t = \pi + k\pi \][/tex]
[tex]\[ t = 1 + k \][/tex]
The points where the pendulum is at its equilibrium position occur at:
[tex]\[ t = 1 + k \][/tex]
This can be written as:
[tex]\[ t = 1, 2, 3, 4, \ldots \][/tex]
Thus, the pendulum is at equilibrium position at [tex]\( t = 1, 2, 3, \ldots \)[/tex].
So when we plot these coordinates on a graph [tex]\( (t, r) \)[/tex]:
- At [tex]\( t = 1 \)[/tex], [tex]\( r = 0 \)[/tex]
- At [tex]\( t = 2 \)[/tex], [tex]\( r = 0 \)[/tex]
- At [tex]\( t = 3 \)[/tex], [tex]\( r = 0 \)[/tex]
- And so on...
These points can be illustrated on a graph as points along the [tex]\( t \)[/tex]-axis where [tex]\( r = 0 \)[/tex].
Thank you for contributing to our discussion. Don't forget to check back for new answers. Keep asking, answering, and sharing useful information. IDNLearn.com is committed to providing accurate answers. Thanks for stopping by, and see you next time for more solutions.