IDNLearn.com: Your reliable source for finding precise answers. Find the answers you need quickly and accurately with help from our knowledgeable and experienced experts.

Compare the magnitude of electromagnetic and gravitational force between two electrons separated by a distance of 2.00 m. Assume electrons have a mass of [tex]\(9.11 \times 10^{-31} \, \text{kg}\)[/tex] and a charge of [tex]\(1.61 \times 10^{-19} \, \text{C}\)[/tex]. Round to two decimal places.

[tex]\[
\begin{aligned}
F_e & = \square \times 10^{-29} \\
F_g & = \square \times 10^{-71} \\
\frac{F_e}{F_g} & = \square \times 10^{42}
\end{aligned}
\][/tex]


Sagot :

To compare the magnitudes of the electromagnetic and gravitational forces between two electrons separated by a distance of 2.00 meters, we need to calculate both forces and then find the ratio of the electromagnetic force to the gravitational force. Here are the steps:

1. Constants and Given Data:
- Mass of an electron, [tex]\( m = 9.11 \times 10^{-31} \, \text{kg} \)[/tex]
- Charge of an electron, [tex]\( e = 1.61 \times 10^{-19} \, \text{C} \)[/tex]
- Distance between electrons, [tex]\( d = 2.00 \, \text{m} \)[/tex]
- Coulomb's constant, [tex]\( k_e = 8.99 \times 10^9 \, \text{N m}^2 \text{C}^{-2} \)[/tex]
- Gravitational constant, [tex]\( G = 6.67430 \times 10^{-11} \, \text{N m}^2 \text{kg}^{-2} \)[/tex]

2. Calculating the Electromagnetic Force [tex]\( F_e \)[/tex]:
[tex]\[ F_e = \frac{k_e \cdot e^2}{d^2} \][/tex]
- Substituting the given values:
[tex]\[ F_e = \frac{8.99 \times 10^9 \, \text{N m}^2 \text{C}^{-2} \cdot (1.61 \times 10^{-19} \, \text{C})^2}{(2.00 \, \text{m})^2} \][/tex]
- The calculated value for [tex]\( F_e \)[/tex] rounded to two decimal places is:
[tex]\[ F_e \approx 5.83 \times 10^{-29} \, \text{N} \][/tex]

3. Calculating the Gravitational Force [tex]\( F_g \)[/tex]:
[tex]\[ F_g = \frac{G \cdot m^2}{d^2} \][/tex]
- Substituting the given values:
[tex]\[ F_g = \frac{6.67430 \times 10^{-11} \, \text{N m}^2 \text{kg}^{-2} \cdot (9.11 \times 10^{-31} \, \text{kg})^2}{(2.00 \, \text{m})^2} \][/tex]
- The calculated value for [tex]\( F_g \)[/tex] rounded to two decimal places is:
[tex]\[ F_g \approx 1.38 \times 10^{-71} \, \text{N} \][/tex]

4. Calculating the Ratio [tex]\( \frac{F_e}{F_g} \)[/tex]:
[tex]\[ \frac{F_e}{F_g} = \frac{5.83 \times 10^{-29} \, \text{N}}{1.38 \times 10^{-71} \, \text{N}} \][/tex]
- This results in:
[tex]\[ \frac{F_e}{F_g} \approx 4.21 \times 10^{42} \][/tex]

Summarizing all the rounded calculations, we have:
[tex]\[ \begin{aligned} F_e & = 5.83 \times 10^{-29} \, \text{N} \\ F_g & = 1.38 \times 10^{-71} \, \text{N} \\ \frac{F_e}{F_g} & = 4.21 \times 10^{42} \end{aligned} \][/tex]

So, the final results are:
[tex]\[ \begin{aligned} F_e & = 5.83 \times 10^{-29} \, \text{N} \\ F_g & = 1.38 \times 10^{-71} \, \text{N} \\ \frac{F_e}{F_g} & = 4.21 \times 10^{42} \end{aligned} \][/tex]