Get the information you need with the help of IDNLearn.com's extensive Q&A platform. Our experts provide timely and accurate responses to help you navigate any topic or issue with confidence.
Sagot :
Let's solve the given system of simultaneous equations step-by-step:
[tex]\[ \begin{aligned} (1) \quad y^2 + xy + 3 &= 0 \\ (2) \quad x &= 6y + 5 \end{aligned} \][/tex]
### Part (a): Show that [tex]\(7 y^2 + 5 y + 3 = 0\)[/tex]
1. Substitute [tex]\(x\)[/tex] from equation (2) into equation (1):
Given [tex]\( x = 6y + 5 \)[/tex], we substitute [tex]\( x \)[/tex] in equation (1):
[tex]\[ y^2 + (6y + 5)y + 3 = 0 \][/tex]
2. Expand and simplify the equation:
[tex]\[ y^2 + 6y^2 + 5y + 3 = 0 \][/tex]
Combine like terms:
[tex]\[ 7y^2 + 5y + 3 = 0 \][/tex]
This confirms that the equation [tex]\( 7y^2 + 5y + 3 = 0 \)[/tex] is indeed correct.
### Part (b): Work out how many solutions these simultaneous equations have
1. Solve the quadratic equation [tex]\( 7y^2 + 5y + 3 = 0 \)[/tex] to find the values of [tex]\( y \)[/tex]:
The quadratic formula is given by:
[tex]\[ y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Here, [tex]\( a = 7 \)[/tex], [tex]\( b = 5 \)[/tex], and [tex]\( c = 3 \)[/tex]:
[tex]\[ y = \frac{-5 \pm \sqrt{5^2 - 4 \cdot 7 \cdot 3}}{2 \cdot 7} \][/tex]
[tex]\[ y = \frac{-5 \pm \sqrt{25 - 84}}{14} \][/tex]
[tex]\[ y = \frac{-5 \pm \sqrt{-59}}{14} \][/tex]
Since [tex]\(\sqrt{-59} = \sqrt{59}i\)[/tex] (where [tex]\(i\)[/tex] is the imaginary unit), we have:
[tex]\[ y = \frac{-5 \pm \sqrt{59}i}{14} \][/tex]
This gives us two solutions for [tex]\( y \)[/tex]:
[tex]\[ y_1 = \frac{-5 - \sqrt{59}i}{14}, \quad y_2 = \frac{-5 + \sqrt{59}i}{14} \][/tex]
2. Calculate the corresponding values of [tex]\( x \)[/tex] for each [tex]\( y \)[/tex] using equation (2):
Substituting [tex]\( y_1 \)[/tex] into equation (2):
[tex]\[ x_1 = 6y_1 + 5 = 6 \left(\frac{-5 - \sqrt{59}i}{14}\right) + 5 \][/tex]
[tex]\[ x_1 = \frac{-30 - 6\sqrt{59}i}{14} + 5 = \frac{-30 - 6\sqrt{59}i}{14} + \frac{70}{14} \][/tex]
[tex]\[ x_1 = \frac{-30 - 6\sqrt{59}i + 70}{14} = \frac{40 - 6\sqrt{59}i}{14} = \frac{20}{7} - \frac{3\sqrt{59}i}{7} \][/tex]
Similarly, for [tex]\( y_2 \)[/tex]:
[tex]\[ x_2 = 6y_2 + 5 = 6 \left(\frac{-5 + \sqrt{59}i}{14}\right) + 5 \][/tex]
[tex]\[ x_2 = \frac{-30 + 6\sqrt{59}i}{14} + 5 = \frac{-30 + 6\sqrt{59}i}{14} + \frac{70}{14} \][/tex]
[tex]\[ x_2 = \frac{-30 + 6\sqrt{59}i + 70}{14} = \frac{40 + 6\sqrt{59}i}{14} = \frac{20}{7} + \frac{3\sqrt{59}i}{7} \][/tex]
In summary, the quadratic equation [tex]\( 7y^2 + 5y + 3 = 0 \)[/tex] has 2 solutions for [tex]\( y \)[/tex]:
[tex]\[ y_1 = \frac{-5 - \sqrt{59}i}{14}, \quad y_2 = \frac{-5 + \sqrt{59}i}{14} \][/tex]
Correspondingly, the [tex]\( x \)[/tex] values are:
[tex]\[ x_1 = \frac{20}{7} - \frac{3\sqrt{59}i}{7}, \quad x_2 = \frac{20}{7} + \frac{3\sqrt{59}i}{7} \][/tex]
Thus, there are 2 solutions to the system of simultaneous equations.
[tex]\[ \begin{aligned} (1) \quad y^2 + xy + 3 &= 0 \\ (2) \quad x &= 6y + 5 \end{aligned} \][/tex]
### Part (a): Show that [tex]\(7 y^2 + 5 y + 3 = 0\)[/tex]
1. Substitute [tex]\(x\)[/tex] from equation (2) into equation (1):
Given [tex]\( x = 6y + 5 \)[/tex], we substitute [tex]\( x \)[/tex] in equation (1):
[tex]\[ y^2 + (6y + 5)y + 3 = 0 \][/tex]
2. Expand and simplify the equation:
[tex]\[ y^2 + 6y^2 + 5y + 3 = 0 \][/tex]
Combine like terms:
[tex]\[ 7y^2 + 5y + 3 = 0 \][/tex]
This confirms that the equation [tex]\( 7y^2 + 5y + 3 = 0 \)[/tex] is indeed correct.
### Part (b): Work out how many solutions these simultaneous equations have
1. Solve the quadratic equation [tex]\( 7y^2 + 5y + 3 = 0 \)[/tex] to find the values of [tex]\( y \)[/tex]:
The quadratic formula is given by:
[tex]\[ y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Here, [tex]\( a = 7 \)[/tex], [tex]\( b = 5 \)[/tex], and [tex]\( c = 3 \)[/tex]:
[tex]\[ y = \frac{-5 \pm \sqrt{5^2 - 4 \cdot 7 \cdot 3}}{2 \cdot 7} \][/tex]
[tex]\[ y = \frac{-5 \pm \sqrt{25 - 84}}{14} \][/tex]
[tex]\[ y = \frac{-5 \pm \sqrt{-59}}{14} \][/tex]
Since [tex]\(\sqrt{-59} = \sqrt{59}i\)[/tex] (where [tex]\(i\)[/tex] is the imaginary unit), we have:
[tex]\[ y = \frac{-5 \pm \sqrt{59}i}{14} \][/tex]
This gives us two solutions for [tex]\( y \)[/tex]:
[tex]\[ y_1 = \frac{-5 - \sqrt{59}i}{14}, \quad y_2 = \frac{-5 + \sqrt{59}i}{14} \][/tex]
2. Calculate the corresponding values of [tex]\( x \)[/tex] for each [tex]\( y \)[/tex] using equation (2):
Substituting [tex]\( y_1 \)[/tex] into equation (2):
[tex]\[ x_1 = 6y_1 + 5 = 6 \left(\frac{-5 - \sqrt{59}i}{14}\right) + 5 \][/tex]
[tex]\[ x_1 = \frac{-30 - 6\sqrt{59}i}{14} + 5 = \frac{-30 - 6\sqrt{59}i}{14} + \frac{70}{14} \][/tex]
[tex]\[ x_1 = \frac{-30 - 6\sqrt{59}i + 70}{14} = \frac{40 - 6\sqrt{59}i}{14} = \frac{20}{7} - \frac{3\sqrt{59}i}{7} \][/tex]
Similarly, for [tex]\( y_2 \)[/tex]:
[tex]\[ x_2 = 6y_2 + 5 = 6 \left(\frac{-5 + \sqrt{59}i}{14}\right) + 5 \][/tex]
[tex]\[ x_2 = \frac{-30 + 6\sqrt{59}i}{14} + 5 = \frac{-30 + 6\sqrt{59}i}{14} + \frac{70}{14} \][/tex]
[tex]\[ x_2 = \frac{-30 + 6\sqrt{59}i + 70}{14} = \frac{40 + 6\sqrt{59}i}{14} = \frac{20}{7} + \frac{3\sqrt{59}i}{7} \][/tex]
In summary, the quadratic equation [tex]\( 7y^2 + 5y + 3 = 0 \)[/tex] has 2 solutions for [tex]\( y \)[/tex]:
[tex]\[ y_1 = \frac{-5 - \sqrt{59}i}{14}, \quad y_2 = \frac{-5 + \sqrt{59}i}{14} \][/tex]
Correspondingly, the [tex]\( x \)[/tex] values are:
[tex]\[ x_1 = \frac{20}{7} - \frac{3\sqrt{59}i}{7}, \quad x_2 = \frac{20}{7} + \frac{3\sqrt{59}i}{7} \][/tex]
Thus, there are 2 solutions to the system of simultaneous equations.
Thank you for contributing to our discussion. Don't forget to check back for new answers. Keep asking, answering, and sharing useful information. IDNLearn.com is your reliable source for answers. We appreciate your visit and look forward to assisting you again soon.