Connect with knowledgeable individuals and find the best answers at IDNLearn.com. Our experts are ready to provide prompt and detailed answers to any questions you may have.
Sagot :
To find the volume of the solid formed by revolving the region enclosed by the curves [tex]\( y = \sqrt{\sqrt{x}+2} \)[/tex], [tex]\( y = 2 \)[/tex], and the line [tex]\( x = 4 \)[/tex] around the x-axis, we can use the disk method. Here’s a detailed step-by-step solution:
1. Identify the curves and bounds:
- The function given is [tex]\( y = \sqrt{\sqrt{x} + 2} \)[/tex].
- The horizontal line is [tex]\( y = 2 \)[/tex].
- The vertical line [tex]\( x = 4 \)[/tex] acts as an upper bound.
- The region starts at [tex]\( x = 0 \)[/tex] (as implied by context).
2. Set up the volume integral using the disk method:
The disk method revolves the region around the x-axis, creating disks with thickness [tex]\( dx \)[/tex]. The volume of each infinitesimally thin disk is given by the area of the disk multiplied by [tex]\( dx \)[/tex].
3. Determine the outer and inner radii:
- The outer radius [tex]\( R \)[/tex] of the disk is given by the distance from the x-axis to [tex]\( y = 2 \)[/tex]. Hence, [tex]\( R(x) = 2 \)[/tex].
- The inner radius [tex]\( r \)[/tex] of the washer is given by the distance from the x-axis to [tex]\( y = \sqrt{\sqrt{x} + 2} \)[/tex].
4. Write the volume of the solid using the integral:
The volume [tex]\( V \)[/tex] is the integral of the area of the washers from [tex]\( x = 0 \)[/tex] to [tex]\( x = 4 \)[/tex].
[tex]\[ V = \pi \int_{0}^{4} \left[ R(x)^2 - r(x)^2 \right] \, dx \][/tex]
Here, [tex]\( R(x) = 2 \)[/tex] and [tex]\( r(x) = \sqrt{\sqrt{x} + 2} \)[/tex].
5. Set up the integral:
[tex]\[ V = \pi \int_{0}^{4} \left[ 2^2 - \left( \sqrt{\sqrt{x} + 2} \right)^2 \right] \, dx \][/tex]
6. Simplify the integrand:
- [tex]\( R(x)^2 = 4 \)[/tex]
- [tex]\( r(x)^2 = \sqrt{x} + 2 \)[/tex]
Hence, the integrand becomes:
[tex]\[ 4 - (\sqrt{x} + 2) = 4 - \sqrt{x} - 2 = 2 - \sqrt{x} \][/tex]
The integral expression becomes:
[tex]\[ V = \pi \int_{0}^{4} \left( 2 - \sqrt{x} \right) \, dx \][/tex]
7. Evaluate the integral:
Compute the integral in two parts:
[tex]\[ \int_{0}^{4} 2 \, dx - \int_{0}^{4} \sqrt{x} \, dx \][/tex]
- [tex]\(\int_{0}^{4} 2 \, dx = 2x \bigg|_0^4 = 2(4) - 2(0) = 8\)[/tex]
- [tex]\(\int_{0}^{4} \sqrt{x} \, dx = \int_{0}^{4} x^{1/2} \, dx = \frac{2}{3} x^{3/2} \bigg|_0^4 = \frac{2}{3} (4^{3/2}) = \frac{2}{3} (8) = \frac{16}{3}\)[/tex]
Subtracting the two results:
[tex]\[ 8 - \frac{16}{3} = \frac{24}{3} - \frac{16}{3} = \frac{8}{3} \][/tex]
8. Multiply by [tex]\(\pi\)[/tex]:
[tex]\[ V = \pi \left( \frac{8}{3} \right) = \frac{8\pi}{3} \][/tex]
This result is then:
[tex]\[ 8.37758040957278 \text{ (in decimal form)} \][/tex]
So, the volume of the solid formed by revolving the given region about the x-axis is approximately [tex]\( 8.37758040957278 \)[/tex] cubic units.
1. Identify the curves and bounds:
- The function given is [tex]\( y = \sqrt{\sqrt{x} + 2} \)[/tex].
- The horizontal line is [tex]\( y = 2 \)[/tex].
- The vertical line [tex]\( x = 4 \)[/tex] acts as an upper bound.
- The region starts at [tex]\( x = 0 \)[/tex] (as implied by context).
2. Set up the volume integral using the disk method:
The disk method revolves the region around the x-axis, creating disks with thickness [tex]\( dx \)[/tex]. The volume of each infinitesimally thin disk is given by the area of the disk multiplied by [tex]\( dx \)[/tex].
3. Determine the outer and inner radii:
- The outer radius [tex]\( R \)[/tex] of the disk is given by the distance from the x-axis to [tex]\( y = 2 \)[/tex]. Hence, [tex]\( R(x) = 2 \)[/tex].
- The inner radius [tex]\( r \)[/tex] of the washer is given by the distance from the x-axis to [tex]\( y = \sqrt{\sqrt{x} + 2} \)[/tex].
4. Write the volume of the solid using the integral:
The volume [tex]\( V \)[/tex] is the integral of the area of the washers from [tex]\( x = 0 \)[/tex] to [tex]\( x = 4 \)[/tex].
[tex]\[ V = \pi \int_{0}^{4} \left[ R(x)^2 - r(x)^2 \right] \, dx \][/tex]
Here, [tex]\( R(x) = 2 \)[/tex] and [tex]\( r(x) = \sqrt{\sqrt{x} + 2} \)[/tex].
5. Set up the integral:
[tex]\[ V = \pi \int_{0}^{4} \left[ 2^2 - \left( \sqrt{\sqrt{x} + 2} \right)^2 \right] \, dx \][/tex]
6. Simplify the integrand:
- [tex]\( R(x)^2 = 4 \)[/tex]
- [tex]\( r(x)^2 = \sqrt{x} + 2 \)[/tex]
Hence, the integrand becomes:
[tex]\[ 4 - (\sqrt{x} + 2) = 4 - \sqrt{x} - 2 = 2 - \sqrt{x} \][/tex]
The integral expression becomes:
[tex]\[ V = \pi \int_{0}^{4} \left( 2 - \sqrt{x} \right) \, dx \][/tex]
7. Evaluate the integral:
Compute the integral in two parts:
[tex]\[ \int_{0}^{4} 2 \, dx - \int_{0}^{4} \sqrt{x} \, dx \][/tex]
- [tex]\(\int_{0}^{4} 2 \, dx = 2x \bigg|_0^4 = 2(4) - 2(0) = 8\)[/tex]
- [tex]\(\int_{0}^{4} \sqrt{x} \, dx = \int_{0}^{4} x^{1/2} \, dx = \frac{2}{3} x^{3/2} \bigg|_0^4 = \frac{2}{3} (4^{3/2}) = \frac{2}{3} (8) = \frac{16}{3}\)[/tex]
Subtracting the two results:
[tex]\[ 8 - \frac{16}{3} = \frac{24}{3} - \frac{16}{3} = \frac{8}{3} \][/tex]
8. Multiply by [tex]\(\pi\)[/tex]:
[tex]\[ V = \pi \left( \frac{8}{3} \right) = \frac{8\pi}{3} \][/tex]
This result is then:
[tex]\[ 8.37758040957278 \text{ (in decimal form)} \][/tex]
So, the volume of the solid formed by revolving the given region about the x-axis is approximately [tex]\( 8.37758040957278 \)[/tex] cubic units.
Thank you for being part of this discussion. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Thank you for choosing IDNLearn.com for your queries. We’re committed to providing accurate answers, so visit us again soon.