Find the best answers to your questions with the help of IDNLearn.com's knowledgeable users. Our experts are available to provide accurate, comprehensive answers to help you make informed decisions about any topic or issue you encounter.

Suppose that [tex]\( f(x) = 5x^6 - 2x^5 \)[/tex].

A) Find all critical numbers of [tex]\( f \)[/tex]. If there are no critical numbers, enter 'NONE'.
Critical numbers: [tex]\(\_\_\_\_\_\_\_\_\_\_\_\)[/tex]

B) Use interval notation to indicate where [tex]\( f(x) \)[/tex] is increasing.
Note: Use 'INF' for [tex]\(\infty\)[/tex], '-INF' for [tex]\(-\infty\)[/tex], and use 'U' for the union symbol.
Increasing: [tex]\(\_\_\_\_\_\_\_\_\_\_\_\)[/tex]

C) Use interval notation to indicate where [tex]\( f(x) \)[/tex] is decreasing.
Decreasing: [tex]\(\_\_\_\_\_\_\_\_\_\_\_\)[/tex]

D) Find the [tex]\( x \)[/tex]-coordinates of all local maxima of [tex]\( f \)[/tex]. If there are no local maxima, enter 'NONE'.
[tex]\( x \)[/tex] values of local maxima: [tex]\(\_\_\_\_\_\_\_\_\_\_\_\)[/tex]

E) Find the [tex]\( x \)[/tex]-coordinates of all local minima of [tex]\( f \)[/tex]. If there are no local minima, enter 'NONE'.
[tex]\( x \)[/tex] values of local minima: [tex]\(\_\_\_\_\_\_\_\_\_\_\_\)[/tex]

F) Use interval notation to indicate where [tex]\( f(x) \)[/tex] is concave up.
Concave up: [tex]\(\_\_\_\_\_\_\_\_\_\_\_\)[/tex]


Sagot :

Let's break down each part of the problem step-by-step:

(A) Find all critical numbers of [tex]\( f \)[/tex].

To find the critical numbers, we first need to find the first derivative [tex]\( f'(x) \)[/tex] and then set it equal to zero and solve for [tex]\( x \)[/tex].

The first derivative of [tex]\( f(x) = 5x^6 - 2x^5 \)[/tex] is:

[tex]\[ f'(x) = \frac{d}{dx}(5x^6 - 2x^5) = 30x^5 - 10x^4 = 10x^4(3x - 1) \][/tex]

Setting [tex]\( f'(x) = 0 \)[/tex]:

[tex]\[ 10x^4(3x - 1) = 0 \][/tex]

This implies [tex]\( x = 0 \)[/tex] or [tex]\( x = \frac{1}{3} \)[/tex].

So the critical numbers are:

[tex]\[ \text{Critical numbers } = [0, \frac{1}{3}] \][/tex]

(B) Use interval notation to indicate where [tex]\( f(x) \)[/tex] is increasing.

To determine where [tex]\( f(x) \)[/tex] is increasing, we look at the intervals where the first derivative [tex]\( f'(x) \)[/tex] is positive.

Solving [tex]\( 30x^5 - 10x^4 > 0 \)[/tex]:

[tex]\[ 10x^4(3x - 1) > 0 \][/tex]

This inequality is satisfied when [tex]\( x > \frac{1}{3} \)[/tex], because [tex]\( x^4 \)[/tex] is always non-negative and is zero only at [tex]\( x = 0 \)[/tex].

Thus, [tex]\( f(x) \)[/tex] is increasing in the interval:

[tex]\[ \text{Increasing: } (\frac{1}{3}, \infty) \][/tex]

(C) Use interval notation to indicate where [tex]\( f(x) \)[/tex] is decreasing.

To determine where [tex]\( f(x) \)[/tex] is decreasing, we look at the intervals where the first derivative [tex]\( f'(x) \)[/tex] is negative.

Solving [tex]\( 30x^5 - 10x^4 < 0 \)[/tex]:

[tex]\[ 10x^4(3x - 1) < 0 \][/tex]

This inequality is satisfied when [tex]\( 0 < x < \frac{1}{3} \)[/tex].

Thus, [tex]\( f(x) \)[/tex] is decreasing in the interval:

[tex]\[ \text{Decreasing: } (-\infty, 0) \cup (0, \frac{1}{3}) \][/tex]

(D) Find the [tex]\( x \)[/tex]-coordinates of all local maxima of [tex]\( f \)[/tex].

To find the local maxima, we check the second derivative [tex]\( f''(x) \)[/tex] at the critical points. If [tex]\( f''(x) < 0 \)[/tex] at a critical point, [tex]\( f(x) \)[/tex] has a local maximum there.

[tex]\[ f''(x) = \frac{d}{dx}(30x^5 - 10x^4) = 150x^4 - 40x^3 \][/tex]

[tex]\[ \text{Evaluating at } x = 0: \][/tex]
[tex]\[ f''(0) = 150(0)^4 - 40(0)^3 = 0 \][/tex]

[tex]\[ \text{Evaluating at } x = \frac{1}{3}: \][/tex]
[tex]\[ f''(\frac{1}{3}) = 150\left(\frac{1}{3}\right)^4 - 40\left(\frac{1}{3}\right)^3 = 150\left(\frac{1}{81}\right) - 40\left(\frac{1}{27}\right) = \frac{150}{81} - \frac{40}{27} = \frac{50}{27} - \frac{40}{27} = \frac{10}{27} > 0 \][/tex]

Thus, there are no local maxima:

[tex]\[ \text{x values of local maxima} = \text{NONE} \][/tex]

(E) Find the [tex]\( x \)[/tex]-coordinates of all local minima of [tex]\( f \)[/tex].

A local minimum occurs at a critical point where [tex]\( f''(x) > 0 \)[/tex].

From the calculation above, we find:

[tex]\[ f''(0) = 0 \][/tex]
[tex]\[ f''(\frac{1}{3}) = \frac{10}{27} > 0 \][/tex]

Thus, there is a local minimum at [tex]\( x = \frac{1}{3} \)[/tex]:

[tex]\[ \text{x values of local minima} = \frac{1}{3} \][/tex]

(F) Use interval notation to indicate where [tex]\( f(x) \)[/tex] is concave up.

To determine concavity, we look at the second derivative [tex]\( f''(x) \)[/tex]. The function is concave up where [tex]\( f''(x) > 0 \)[/tex].

[tex]\[ 150x^4 - 40x^3 > 0 \][/tex]

Factoring out the common terms:

[tex]\[ 10x^3(15x - 4) > 0 \][/tex]

This inequality is satisfied when [tex]\( x < 0 \)[/tex] or [tex]\( x > \frac{4}{15} \)[/tex].

Thus, [tex]\( f(x) \)[/tex] is concave up in the intervals:

[tex]\[ \text{Concave up: } (-\infty, 0) \cup (\frac{4}{15}, \infty) \][/tex]

So, let's compile everything:

(A) Critical numbers = [tex]\( [0, \frac{1}{3}] \)[/tex]

(B) Increasing: [tex]\( (\frac{1}{3}, \infty) \)[/tex]

(C) Decreasing: [tex]\( (-\infty, 0) \cup (0, \frac{1}{3}) \)[/tex]

(D) [tex]\( x \)[/tex] values of local maxima = NONE

(E) [tex]\( x \)[/tex] values of local minima = [tex]\( \frac{1}{3} \)[/tex]

(F) Concave up = [tex]\( (-\infty, 0) \cup (\frac{4}{15}, \infty) \)[/tex]