IDNLearn.com provides a seamless experience for finding the answers you need. Our platform provides accurate, detailed responses to help you navigate any topic with ease.
Sagot :
To find the inverse of a matrix [tex]\( Y \)[/tex], we need to check whether the determinant of [tex]\( Y \)[/tex] is non-zero. If the determinant is zero, the matrix does not have an inverse. If the determinant is non-zero, we can find the inverse using the formula for the inverse of a 2x2 matrix:
[tex]\[ Y^{-1} = \frac{1}{\text{det}(Y)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \][/tex]
where [tex]\( Y = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \)[/tex] and [tex]\(\text{det}(Y) = ad - bc \)[/tex].
Let's find the inverses for each matrix given.
### 1. [tex]\( Y = \begin{bmatrix} 2 & -2 \\ -1 & 2 \end{bmatrix} \)[/tex]
Determinant [tex]\( \text{det}(Y) = 2 \cdot 2 - (-2) \cdot (-1) = 4 - 2 = 2 \)[/tex].
[tex]\[ Y^{-1} = \frac{1}{2} \begin{bmatrix} 2 & 2 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0.5 & 1 \end{bmatrix} \][/tex]
### 2. [tex]\( Y = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \)[/tex]
Determinant [tex]\( \text{det}(Y) = 1 \cdot 1 - (-1) \cdot 1 = 1 + 1 = 2 \)[/tex].
[tex]\[ Y^{-1} = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 0.5 & 0.5 \\ -0.5 & 0.5 \end{bmatrix} \][/tex]
### 3. [tex]\( Y = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \)[/tex]
Determinant [tex]\( \text{det}(Y) = 2 \cdot 0 - (-1) \cdot 1 = 0 + 1 = 1 \)[/tex].
[tex]\[ Y^{-1} = \begin{bmatrix} 0 & 1 \\ -1 & 2 \end{bmatrix} \][/tex]
### 4. [tex]\( Y = \begin{bmatrix} 2 & 3 \\ 1 & 1 \end{bmatrix} \)[/tex]
Determinant [tex]\( \text{det}(Y) = 2 \cdot 1 - 3 \cdot 1 = 2 - 3 = -1 \)[/tex].
[tex]\[ Y^{-1} = \frac{1}{-1} \begin{bmatrix} 1 & -3 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} -1 & 3 \\ 1 & -2 \end{bmatrix} \][/tex]
### 5. [tex]\( Y = \begin{bmatrix} 1 & 4 \\ 1 & 3 \end{bmatrix} \)[/tex]
Determinant [tex]\( \text{det}(Y) = 1 \cdot 3 - 4 \cdot 1 = 3 - 4 = -1 \)[/tex].
[tex]\[ Y^{-1} = \frac{1}{-1} \begin{bmatrix} 3 & -4 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} -3 & 4 \\ 1 & -1 \end{bmatrix} \][/tex]
### 6. [tex]\( Y = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \)[/tex]
Determinant [tex]\( \text{det}(Y) = 1 \cdot 4 - 2 \cdot 3 = 4 - 6 = -2 \)[/tex].
[tex]\[ Y^{-1} = \frac{1}{-2} \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix} = \begin{bmatrix} -2 & 1 \\ 1.5 & -0.5 \end{bmatrix} \][/tex]
### 7. [tex]\( Y = \begin{bmatrix} 3 & 4 \\ 3 & 4 \end{bmatrix} \)[/tex]
Determinant [tex]\( \text{det}(Y) = 3 \cdot 4 - 4 \cdot 3 = 12 - 12 = 0 \)[/tex].
This matrix does not have an inverse because the determinant is zero, indicating that the matrix is singular.
Therefore, the inverse matrices are as follows:
1. [tex]\( Y_1^{-1} = \begin{bmatrix} 1 & 1 \\ 0.5 & 1 \end{bmatrix} \)[/tex]
2. [tex]\( Y_2^{-1} = \begin{bmatrix} 0.5 & 0.5 \\ -0.5 & 0.5 \end{bmatrix} \)[/tex]
3. [tex]\( Y_3^{-1} = \begin{bmatrix} 0 & 1 \\ -1 & 2 \end{bmatrix} \)[/tex]
4. [tex]\( Y_4^{-1} = \begin{bmatrix} -1 & 3 \\ 1 & -2 \end{bmatrix} \)[/tex]
5. [tex]\( Y_5^{-1} = \begin{bmatrix} -3 & 4 \\ 1 & -1 \end{bmatrix} \)[/tex]
6. [tex]\( Y_6^{-1} = \begin{bmatrix} -2 & 1 \\ 1.5 & -0.5 \end{bmatrix} \)[/tex]
7. [tex]\( Y_7^{-1} = \text{no inverse (determinant is zero)} \)[/tex]
[tex]\[ Y^{-1} = \frac{1}{\text{det}(Y)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \][/tex]
where [tex]\( Y = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \)[/tex] and [tex]\(\text{det}(Y) = ad - bc \)[/tex].
Let's find the inverses for each matrix given.
### 1. [tex]\( Y = \begin{bmatrix} 2 & -2 \\ -1 & 2 \end{bmatrix} \)[/tex]
Determinant [tex]\( \text{det}(Y) = 2 \cdot 2 - (-2) \cdot (-1) = 4 - 2 = 2 \)[/tex].
[tex]\[ Y^{-1} = \frac{1}{2} \begin{bmatrix} 2 & 2 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0.5 & 1 \end{bmatrix} \][/tex]
### 2. [tex]\( Y = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \)[/tex]
Determinant [tex]\( \text{det}(Y) = 1 \cdot 1 - (-1) \cdot 1 = 1 + 1 = 2 \)[/tex].
[tex]\[ Y^{-1} = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 0.5 & 0.5 \\ -0.5 & 0.5 \end{bmatrix} \][/tex]
### 3. [tex]\( Y = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \)[/tex]
Determinant [tex]\( \text{det}(Y) = 2 \cdot 0 - (-1) \cdot 1 = 0 + 1 = 1 \)[/tex].
[tex]\[ Y^{-1} = \begin{bmatrix} 0 & 1 \\ -1 & 2 \end{bmatrix} \][/tex]
### 4. [tex]\( Y = \begin{bmatrix} 2 & 3 \\ 1 & 1 \end{bmatrix} \)[/tex]
Determinant [tex]\( \text{det}(Y) = 2 \cdot 1 - 3 \cdot 1 = 2 - 3 = -1 \)[/tex].
[tex]\[ Y^{-1} = \frac{1}{-1} \begin{bmatrix} 1 & -3 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} -1 & 3 \\ 1 & -2 \end{bmatrix} \][/tex]
### 5. [tex]\( Y = \begin{bmatrix} 1 & 4 \\ 1 & 3 \end{bmatrix} \)[/tex]
Determinant [tex]\( \text{det}(Y) = 1 \cdot 3 - 4 \cdot 1 = 3 - 4 = -1 \)[/tex].
[tex]\[ Y^{-1} = \frac{1}{-1} \begin{bmatrix} 3 & -4 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} -3 & 4 \\ 1 & -1 \end{bmatrix} \][/tex]
### 6. [tex]\( Y = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \)[/tex]
Determinant [tex]\( \text{det}(Y) = 1 \cdot 4 - 2 \cdot 3 = 4 - 6 = -2 \)[/tex].
[tex]\[ Y^{-1} = \frac{1}{-2} \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix} = \begin{bmatrix} -2 & 1 \\ 1.5 & -0.5 \end{bmatrix} \][/tex]
### 7. [tex]\( Y = \begin{bmatrix} 3 & 4 \\ 3 & 4 \end{bmatrix} \)[/tex]
Determinant [tex]\( \text{det}(Y) = 3 \cdot 4 - 4 \cdot 3 = 12 - 12 = 0 \)[/tex].
This matrix does not have an inverse because the determinant is zero, indicating that the matrix is singular.
Therefore, the inverse matrices are as follows:
1. [tex]\( Y_1^{-1} = \begin{bmatrix} 1 & 1 \\ 0.5 & 1 \end{bmatrix} \)[/tex]
2. [tex]\( Y_2^{-1} = \begin{bmatrix} 0.5 & 0.5 \\ -0.5 & 0.5 \end{bmatrix} \)[/tex]
3. [tex]\( Y_3^{-1} = \begin{bmatrix} 0 & 1 \\ -1 & 2 \end{bmatrix} \)[/tex]
4. [tex]\( Y_4^{-1} = \begin{bmatrix} -1 & 3 \\ 1 & -2 \end{bmatrix} \)[/tex]
5. [tex]\( Y_5^{-1} = \begin{bmatrix} -3 & 4 \\ 1 & -1 \end{bmatrix} \)[/tex]
6. [tex]\( Y_6^{-1} = \begin{bmatrix} -2 & 1 \\ 1.5 & -0.5 \end{bmatrix} \)[/tex]
7. [tex]\( Y_7^{-1} = \text{no inverse (determinant is zero)} \)[/tex]
We greatly appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. For dependable answers, trust IDNLearn.com. Thank you for visiting, and we look forward to helping you again soon.