Get the answers you need from a community of experts on IDNLearn.com. Find the solutions you need quickly and accurately with help from our knowledgeable community.
Sagot :
To prove that [tex]\(\lim_{{x \to 0}} \sqrt{4-x} = 2\)[/tex], we will use the definition of a limit. Let’s apply the [tex]\(\epsilon\)[/tex]-[tex]\(\delta\)[/tex] definition of a limit:
1. Definition: We need to show that for every [tex]\(\epsilon > 0\)[/tex], there exists a [tex]\(\delta > 0\)[/tex] such that if [tex]\(0 < |x - 0| < \delta\)[/tex], then [tex]\(|\sqrt{4 - x} - 2| < \epsilon\)[/tex].
2. Simplifying the expression: Let's start by manipulating the expression [tex]\(|\sqrt{4 - x} - 2|\)[/tex]. Notice:
[tex]\[ |\sqrt{4 - x} - 2|. \][/tex]
3. Converting to a helpful form: We can multiply and divide by the conjugate to help simplify:
[tex]\[ |\sqrt{4 - x} - 2| = \left|\frac{(\sqrt{4 - x} - 2) \cdot (\sqrt{4 - x} + 2)}{\sqrt{4 - x} + 2}\right| = \left|\frac{4 - x - 4}{\sqrt{4 - x} + 2}\right| = \left|\frac{-x}{\sqrt{4 - x} + 2}\right| = \frac{|x|}{|\sqrt{4 - x} + 2|}. \][/tex]
4. Estimating the denominator: Observe that since [tex]\(x\)[/tex] is approaching 0, [tex]\(\sqrt{4 - x} + 2\)[/tex] is close to [tex]\(\sqrt{4} + 2 = 4\)[/tex]. Let's note that for small values of [tex]\(x\)[/tex], the expression [tex]\(\sqrt{4 - x} + 2\)[/tex] remains close to 4 and is bounded below by some positive number. Specifically, since [tex]\(\sqrt{4 - x}\)[/tex] is a continuous function near [tex]\(x = 0\)[/tex]:
[tex]\[ \sqrt{4 - x} \in [\sqrt{3.9}, 2] \text{ when } x \text{ is close to } 0. \][/tex]
Hence, we can estimate:
[tex]\[ \sqrt{4 - x} + 2 \geq \sqrt{3.9} + 2 > 2 + 2 = 4. \][/tex]
Now, we have a clear lower bound for the denominator which does not equal zero and remains positive.
5. Finding [tex]\(\delta\)[/tex] in terms of [tex]\(\epsilon\)[/tex]:
Given that for very small [tex]\(x\)[/tex], [tex]\(\sqrt{4 - x} + 2\)[/tex] is approximately 4:
[tex]\[ \frac{|x|}{|\sqrt{4 - x} + 2|} \leq \frac{|x|}{4}. \][/tex]
For [tex]\(|\sqrt{4 - x} - 2| < \epsilon\)[/tex], we need:
[tex]\[ \frac{|x|}{4} < \epsilon \implies |x| < 4\epsilon. \][/tex]
Thus, we can take [tex]\(\delta = 4\epsilon\)[/tex].
6. Conclusion: Finally, by the [tex]\(\epsilon\)[/tex]-[tex]\(\delta\)[/tex] definition, for every [tex]\(\epsilon > 0\)[/tex], if we choose [tex]\(\delta = 4\epsilon\)[/tex], then for all [tex]\(x\)[/tex] such that [tex]\(0 < |x - 0| < \delta\)[/tex], it follows that:
[tex]\[ |\sqrt{4 - x} - 2| < \epsilon. \][/tex]
Therefore, we have shown via the [tex]\(\epsilon\)[/tex]-[tex]\(\delta\)[/tex] definition that:
[tex]\[ \lim_{{x \to 0}} \sqrt{4 - x} = 2. \][/tex]
1. Definition: We need to show that for every [tex]\(\epsilon > 0\)[/tex], there exists a [tex]\(\delta > 0\)[/tex] such that if [tex]\(0 < |x - 0| < \delta\)[/tex], then [tex]\(|\sqrt{4 - x} - 2| < \epsilon\)[/tex].
2. Simplifying the expression: Let's start by manipulating the expression [tex]\(|\sqrt{4 - x} - 2|\)[/tex]. Notice:
[tex]\[ |\sqrt{4 - x} - 2|. \][/tex]
3. Converting to a helpful form: We can multiply and divide by the conjugate to help simplify:
[tex]\[ |\sqrt{4 - x} - 2| = \left|\frac{(\sqrt{4 - x} - 2) \cdot (\sqrt{4 - x} + 2)}{\sqrt{4 - x} + 2}\right| = \left|\frac{4 - x - 4}{\sqrt{4 - x} + 2}\right| = \left|\frac{-x}{\sqrt{4 - x} + 2}\right| = \frac{|x|}{|\sqrt{4 - x} + 2|}. \][/tex]
4. Estimating the denominator: Observe that since [tex]\(x\)[/tex] is approaching 0, [tex]\(\sqrt{4 - x} + 2\)[/tex] is close to [tex]\(\sqrt{4} + 2 = 4\)[/tex]. Let's note that for small values of [tex]\(x\)[/tex], the expression [tex]\(\sqrt{4 - x} + 2\)[/tex] remains close to 4 and is bounded below by some positive number. Specifically, since [tex]\(\sqrt{4 - x}\)[/tex] is a continuous function near [tex]\(x = 0\)[/tex]:
[tex]\[ \sqrt{4 - x} \in [\sqrt{3.9}, 2] \text{ when } x \text{ is close to } 0. \][/tex]
Hence, we can estimate:
[tex]\[ \sqrt{4 - x} + 2 \geq \sqrt{3.9} + 2 > 2 + 2 = 4. \][/tex]
Now, we have a clear lower bound for the denominator which does not equal zero and remains positive.
5. Finding [tex]\(\delta\)[/tex] in terms of [tex]\(\epsilon\)[/tex]:
Given that for very small [tex]\(x\)[/tex], [tex]\(\sqrt{4 - x} + 2\)[/tex] is approximately 4:
[tex]\[ \frac{|x|}{|\sqrt{4 - x} + 2|} \leq \frac{|x|}{4}. \][/tex]
For [tex]\(|\sqrt{4 - x} - 2| < \epsilon\)[/tex], we need:
[tex]\[ \frac{|x|}{4} < \epsilon \implies |x| < 4\epsilon. \][/tex]
Thus, we can take [tex]\(\delta = 4\epsilon\)[/tex].
6. Conclusion: Finally, by the [tex]\(\epsilon\)[/tex]-[tex]\(\delta\)[/tex] definition, for every [tex]\(\epsilon > 0\)[/tex], if we choose [tex]\(\delta = 4\epsilon\)[/tex], then for all [tex]\(x\)[/tex] such that [tex]\(0 < |x - 0| < \delta\)[/tex], it follows that:
[tex]\[ |\sqrt{4 - x} - 2| < \epsilon. \][/tex]
Therefore, we have shown via the [tex]\(\epsilon\)[/tex]-[tex]\(\delta\)[/tex] definition that:
[tex]\[ \lim_{{x \to 0}} \sqrt{4 - x} = 2. \][/tex]
We value your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Thank you for trusting IDNLearn.com. We’re dedicated to providing accurate answers, so visit us again for more solutions.