Connect with a knowledgeable community and get your questions answered on IDNLearn.com. Join our community to receive prompt, thorough responses from knowledgeable experts.
Sagot :
To solve the equation [tex]\( x^6 - x^3 - 2 = 0 \)[/tex], follow these detailed steps:
1. Identify the type of equation:
This is a polynomial equation of degree 6.
2. Rewrite the equation:
Introduce a substitution to simplify the polynomial. Let [tex]\( y = x^3 \)[/tex]. Thus the equation becomes:
[tex]\[ y^2 - y - 2 = 0 \][/tex]
3. Solve the quadratic equation:
The equation [tex]\( y^2 - y - 2 = 0 \)[/tex] is a standard quadratic equation and can be solved using the quadratic formula. Recall that for a quadratic equation [tex]\( ay^2 + by + c = 0 \)[/tex], the solutions are given by:
[tex]\[ y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Here, [tex]\( a = 1 \)[/tex], [tex]\( b = -1 \)[/tex], and [tex]\( c = -2 \)[/tex]. Plugging these values in:
[tex]\[ y = \frac{-(-1) \pm \sqrt{(-1)^2 - 4 \cdot 1 \cdot (-2)}}{2 \cdot 1} \][/tex]
Simplify inside the square root:
[tex]\[ y = \frac{1 \pm \sqrt{1 + 8}}{2} \][/tex]
[tex]\[ y = \frac{1 \pm \sqrt{9}}{2} \][/tex]
[tex]\[ y = \frac{1 \pm 3}{2} \][/tex]
Thus, the solutions for [tex]\( y \)[/tex] are:
[tex]\[ y = \frac{1 + 3}{2} = 2 \quad \text{and} \quad y = \frac{1 - 3}{2} = -1 \][/tex]
4. Back-substitute [tex]\( y = x^3 \)[/tex]:
We now have two equations to solve for [tex]\( x \)[/tex]:
[tex]\[ x^3 = 2 \quad \text{and} \quad x^3 = -1 \][/tex]
5. Solve [tex]\( x^3 = 2 \)[/tex]:
The solutions to [tex]\( x^3 = 2 \)[/tex] are the cube roots of 2:
[tex]\[ x = 2^{1/3}, \; \omega 2^{1/3}, \; \omega^2 2^{1/3} \][/tex]
where [tex]\( \omega \)[/tex] is a primitive cube root of unity satisfying [tex]\( \omega = -\frac{1}{2} + \frac{\sqrt{3}}{2} i \)[/tex] and [tex]\( \omega^2 = -\frac{1}{2} - \frac{\sqrt{3}}{2} i \)[/tex].
Therefore:
[tex]\[ x = 2^{1/3}, \; -\frac{2^{1/3}}{2} + \frac{2^{1/3}\sqrt{3}}{2} i, \; -\frac{2^{1/3}}{2} - \frac{2^{1/3}\sqrt{3}}{2} i \][/tex]
6. Solve [tex]\( x^3 = -1 \)[/tex]:
The solutions to [tex]\( x^3 = -1 \)[/tex] are the cube roots of -1:
[tex]\[ x = -1, \; \omega, \; \omega^2 \][/tex]
Note here [tex]\( \omega \)[/tex] and [tex]\( \omega^2 \)[/tex] remain the same as defined previously since they are roots of unity.
Therefore:
[tex]\[ x = -1, \; -\frac{1}{2} + \frac{\sqrt{3}}{2} i, \; -\frac{1}{2} - \frac{\sqrt{3}}{2} i \][/tex]
7. Compile all solutions:
Collecting all solutions from steps 5 and 6, we get:
[tex]\[ x = -1, 2^{1/3}, -\frac{1}{2} + \frac{\sqrt{3}}{2} i, -\frac{1}{2} - \frac{\sqrt{3}}{2} i, -\frac{2^{1/3}}{2} + \frac{2^{1/3}\sqrt{3}}{2} i, -\frac{2^{1/3}}{2} - \frac{2^{1/3}\sqrt{3}}{2} i \][/tex]
Thus, the solutions to the equation [tex]\( x^6 - x^3 - 2 = 0 \)[/tex] are:
[tex]\[ -1, \; 2^{1/3}, \; -\frac{1}{2} + \frac{\sqrt{3}}{2} i, \; -\frac{1}{2} - \frac{\sqrt{3}}{2} i, \; -\frac{2^{1/3}}{2} + \frac{2^{1/3}\sqrt{3}}{2} i, \; -\frac{2^{1/3}}{2} - \frac{2^{1/3}\sqrt{3}}{2} i \][/tex]
1. Identify the type of equation:
This is a polynomial equation of degree 6.
2. Rewrite the equation:
Introduce a substitution to simplify the polynomial. Let [tex]\( y = x^3 \)[/tex]. Thus the equation becomes:
[tex]\[ y^2 - y - 2 = 0 \][/tex]
3. Solve the quadratic equation:
The equation [tex]\( y^2 - y - 2 = 0 \)[/tex] is a standard quadratic equation and can be solved using the quadratic formula. Recall that for a quadratic equation [tex]\( ay^2 + by + c = 0 \)[/tex], the solutions are given by:
[tex]\[ y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Here, [tex]\( a = 1 \)[/tex], [tex]\( b = -1 \)[/tex], and [tex]\( c = -2 \)[/tex]. Plugging these values in:
[tex]\[ y = \frac{-(-1) \pm \sqrt{(-1)^2 - 4 \cdot 1 \cdot (-2)}}{2 \cdot 1} \][/tex]
Simplify inside the square root:
[tex]\[ y = \frac{1 \pm \sqrt{1 + 8}}{2} \][/tex]
[tex]\[ y = \frac{1 \pm \sqrt{9}}{2} \][/tex]
[tex]\[ y = \frac{1 \pm 3}{2} \][/tex]
Thus, the solutions for [tex]\( y \)[/tex] are:
[tex]\[ y = \frac{1 + 3}{2} = 2 \quad \text{and} \quad y = \frac{1 - 3}{2} = -1 \][/tex]
4. Back-substitute [tex]\( y = x^3 \)[/tex]:
We now have two equations to solve for [tex]\( x \)[/tex]:
[tex]\[ x^3 = 2 \quad \text{and} \quad x^3 = -1 \][/tex]
5. Solve [tex]\( x^3 = 2 \)[/tex]:
The solutions to [tex]\( x^3 = 2 \)[/tex] are the cube roots of 2:
[tex]\[ x = 2^{1/3}, \; \omega 2^{1/3}, \; \omega^2 2^{1/3} \][/tex]
where [tex]\( \omega \)[/tex] is a primitive cube root of unity satisfying [tex]\( \omega = -\frac{1}{2} + \frac{\sqrt{3}}{2} i \)[/tex] and [tex]\( \omega^2 = -\frac{1}{2} - \frac{\sqrt{3}}{2} i \)[/tex].
Therefore:
[tex]\[ x = 2^{1/3}, \; -\frac{2^{1/3}}{2} + \frac{2^{1/3}\sqrt{3}}{2} i, \; -\frac{2^{1/3}}{2} - \frac{2^{1/3}\sqrt{3}}{2} i \][/tex]
6. Solve [tex]\( x^3 = -1 \)[/tex]:
The solutions to [tex]\( x^3 = -1 \)[/tex] are the cube roots of -1:
[tex]\[ x = -1, \; \omega, \; \omega^2 \][/tex]
Note here [tex]\( \omega \)[/tex] and [tex]\( \omega^2 \)[/tex] remain the same as defined previously since they are roots of unity.
Therefore:
[tex]\[ x = -1, \; -\frac{1}{2} + \frac{\sqrt{3}}{2} i, \; -\frac{1}{2} - \frac{\sqrt{3}}{2} i \][/tex]
7. Compile all solutions:
Collecting all solutions from steps 5 and 6, we get:
[tex]\[ x = -1, 2^{1/3}, -\frac{1}{2} + \frac{\sqrt{3}}{2} i, -\frac{1}{2} - \frac{\sqrt{3}}{2} i, -\frac{2^{1/3}}{2} + \frac{2^{1/3}\sqrt{3}}{2} i, -\frac{2^{1/3}}{2} - \frac{2^{1/3}\sqrt{3}}{2} i \][/tex]
Thus, the solutions to the equation [tex]\( x^6 - x^3 - 2 = 0 \)[/tex] are:
[tex]\[ -1, \; 2^{1/3}, \; -\frac{1}{2} + \frac{\sqrt{3}}{2} i, \; -\frac{1}{2} - \frac{\sqrt{3}}{2} i, \; -\frac{2^{1/3}}{2} + \frac{2^{1/3}\sqrt{3}}{2} i, \; -\frac{2^{1/3}}{2} - \frac{2^{1/3}\sqrt{3}}{2} i \][/tex]
We greatly appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. IDNLearn.com has the solutions to your questions. Thanks for stopping by, and see you next time for more reliable information.