IDNLearn.com helps you find the answers you need quickly and efficiently. Our platform offers reliable and detailed answers, ensuring you have the information you need.
Sagot :
To determine the distance between the source charge and the test charge, we can use Coulomb's Law as it pertains to electric fields. The relationship is given by:
[tex]\[ E = k \frac{Q}{r^2} \][/tex]
where:
- [tex]\(E\)[/tex] is the electric field,
- [tex]\(k\)[/tex] is Coulomb's constant ( [tex]\(8.99 \times 10^9 \, \frac{N \cdot m^2}{C^2} \)[/tex] ),
- [tex]\(Q\)[/tex] is the source charge ( [tex]\(3 \, \mu C = 3 \times 10^{-6} \, C\)[/tex] ), and
- [tex]\(r\)[/tex] is the distance we need to find.
We need to solve for [tex]\(r\)[/tex], the distance. Rearranging the equation to solve for [tex]\(r^2\)[/tex], we get:
[tex]\[ r^2 = k \frac{Q}{E} \][/tex]
Taking the square root of both sides, we get:
[tex]\[ r = \sqrt{ \frac{kQ}{E} } \][/tex]
Substituting in the given values:
[tex]\[ r = \sqrt{ \frac{8.99 \times 10^9 \, \frac{N \cdot m^2}{C^2} \times 3 \times 10^{-6} \, C}{2.86 \times 10^5 \, \frac{N}{C}} } \][/tex]
Calculate the value inside the square root:
[tex]\[ r = \sqrt{ \frac{8.99 \times 10^9 \times 3 \times 10^{-6}}{2.86 \times 10^5} } \][/tex]
Divide the products in the numerator and the denominator:
[tex]\[ r = \sqrt{ \frac{26.97 \times 10^3}{2.86 \times 10^5} } \][/tex]
Simplify the exponent part:
[tex]\[ r = \sqrt{ \frac{26.97}{2.86 \times 10^2} } \][/tex]
[tex]\[ r = \sqrt{ \frac{26.97}{286} } \][/tex]
Calculate the fraction:
[tex]\[ r = \sqrt{ 0.09432 } \][/tex]
Finally, take the square root:
[tex]\[ r \approx 0.30708418927176845 \][/tex]
Rounding this to the nearest hundredth:
[tex]\[ r \approx 0.31 \, m \][/tex]
Thus, the distance of the test charge from the source charge, rounded to the nearest hundredth, is:
[tex]\[ \boxed{0.31} \, m \][/tex]
[tex]\[ E = k \frac{Q}{r^2} \][/tex]
where:
- [tex]\(E\)[/tex] is the electric field,
- [tex]\(k\)[/tex] is Coulomb's constant ( [tex]\(8.99 \times 10^9 \, \frac{N \cdot m^2}{C^2} \)[/tex] ),
- [tex]\(Q\)[/tex] is the source charge ( [tex]\(3 \, \mu C = 3 \times 10^{-6} \, C\)[/tex] ), and
- [tex]\(r\)[/tex] is the distance we need to find.
We need to solve for [tex]\(r\)[/tex], the distance. Rearranging the equation to solve for [tex]\(r^2\)[/tex], we get:
[tex]\[ r^2 = k \frac{Q}{E} \][/tex]
Taking the square root of both sides, we get:
[tex]\[ r = \sqrt{ \frac{kQ}{E} } \][/tex]
Substituting in the given values:
[tex]\[ r = \sqrt{ \frac{8.99 \times 10^9 \, \frac{N \cdot m^2}{C^2} \times 3 \times 10^{-6} \, C}{2.86 \times 10^5 \, \frac{N}{C}} } \][/tex]
Calculate the value inside the square root:
[tex]\[ r = \sqrt{ \frac{8.99 \times 10^9 \times 3 \times 10^{-6}}{2.86 \times 10^5} } \][/tex]
Divide the products in the numerator and the denominator:
[tex]\[ r = \sqrt{ \frac{26.97 \times 10^3}{2.86 \times 10^5} } \][/tex]
Simplify the exponent part:
[tex]\[ r = \sqrt{ \frac{26.97}{2.86 \times 10^2} } \][/tex]
[tex]\[ r = \sqrt{ \frac{26.97}{286} } \][/tex]
Calculate the fraction:
[tex]\[ r = \sqrt{ 0.09432 } \][/tex]
Finally, take the square root:
[tex]\[ r \approx 0.30708418927176845 \][/tex]
Rounding this to the nearest hundredth:
[tex]\[ r \approx 0.31 \, m \][/tex]
Thus, the distance of the test charge from the source charge, rounded to the nearest hundredth, is:
[tex]\[ \boxed{0.31} \, m \][/tex]
Thank you for using this platform to share and learn. Don't hesitate to keep asking and answering. We value every contribution you make. Thank you for choosing IDNLearn.com. We’re dedicated to providing clear answers, so visit us again for more solutions.