Discover how IDNLearn.com can help you find the answers you need quickly and easily. Get step-by-step guidance for all your technical questions from our knowledgeable community members.
Sagot :
Certainly! Let's solve the given trigonometric equation step by step:
[tex]\[ 9 \cos^2 x - 4 \cos x - 1 = 0 \][/tex]
1. Substitute [tex]\(\cos(x)\)[/tex] with [tex]\(u\)[/tex]:
Let [tex]\(u = \cos(x)\)[/tex]. Then the equation becomes a quadratic in [tex]\(u\)[/tex]:
[tex]\[ 9u^2 - 4u - 1 = 0 \][/tex]
2. Solve the quadratic equation:
The general form of a quadratic equation is [tex]\(au^2 + bu + c = 0\)[/tex]. For our equation, [tex]\(a = 9\)[/tex], [tex]\(b = -4\)[/tex], and [tex]\(c = -1\)[/tex].
3. Calculate the discriminant:
The discriminant of a quadratic equation [tex]\(au^2 + bu + c = 0\)[/tex] is given by [tex]\( \Delta = b^2 - 4ac \)[/tex].
Here, [tex]\( \Delta = (-4)^2 - 4 \cdot 9 \cdot (-1) = 16 + 36 = 52 \)[/tex].
4. Find the roots using the quadratic formula:
The quadratic formula states that the solutions for [tex]\(u\)[/tex] are given by:
[tex]\[ u = \frac{-b \pm \sqrt{\Delta}}{2a} \][/tex]
Plugging in our values:
[tex]\[ u_{1} = \frac{-(-4) + \sqrt{52}}{2 \cdot 9} = \frac{4 + 2\sqrt{13}}{18} = \frac{2 + \sqrt{13}}{9} \approx 0.6228 \][/tex]
[tex]\[ u_{2} = \frac{-(-4) - \sqrt{52}}{2 \cdot 9} = \frac{4 - 2\sqrt{13}}{18} = \frac{2 - \sqrt{13}}{9} \approx -0.1784 \][/tex]
5. Convert [tex]\(u\)[/tex] back to [tex]\(x\)[/tex] using the arccosine function:
To find [tex]\(x\)[/tex], we take the arccosine of both [tex]\(u_{1}\)[/tex] and [tex]\(u_{2}\)[/tex]:
[tex]\[ x_{1} = \arccos(u_{1}) \approx \arccos(0.6228) \approx 0.8984 \, \text{(radians)} \][/tex]
[tex]\[ x_{2} = \arccos(u_{2}) \approx \arccos(-0.1784) \approx 1.7501 \, \text{(radians)} \][/tex]
6. Find additional solutions within the range [tex]\([0, 2\pi)\)[/tex]:
Since the cosine function is periodic and symmetric, we have additional solutions:
[tex]\[ x_{3} = 2\pi - x_{1} = 2\pi - 0.8984 \approx 5.3848 \, \text{(radians)} \][/tex]
[tex]\[ x_{4} = 2\pi - x_{2} = 2\pi - 1.7501 \approx 4.5330 \, \text{(radians)} \][/tex]
Hence, the detailed solutions for [tex]\(x\)[/tex] within the interval [tex]\([0, 2\pi)\)[/tex] are:
- [tex]\( x_{1} \approx 0.8984 \, \text{radians} \)[/tex]
- [tex]\( x_{2} \approx 1.7501 \, \text{radians} \)[/tex]
- [tex]\( x_{3} \approx 5.3848 \, \text{radians} \)[/tex]
- [tex]\( x_{4} \approx 4.5330 \, \text{radians} \)[/tex]
[tex]\[ 9 \cos^2 x - 4 \cos x - 1 = 0 \][/tex]
1. Substitute [tex]\(\cos(x)\)[/tex] with [tex]\(u\)[/tex]:
Let [tex]\(u = \cos(x)\)[/tex]. Then the equation becomes a quadratic in [tex]\(u\)[/tex]:
[tex]\[ 9u^2 - 4u - 1 = 0 \][/tex]
2. Solve the quadratic equation:
The general form of a quadratic equation is [tex]\(au^2 + bu + c = 0\)[/tex]. For our equation, [tex]\(a = 9\)[/tex], [tex]\(b = -4\)[/tex], and [tex]\(c = -1\)[/tex].
3. Calculate the discriminant:
The discriminant of a quadratic equation [tex]\(au^2 + bu + c = 0\)[/tex] is given by [tex]\( \Delta = b^2 - 4ac \)[/tex].
Here, [tex]\( \Delta = (-4)^2 - 4 \cdot 9 \cdot (-1) = 16 + 36 = 52 \)[/tex].
4. Find the roots using the quadratic formula:
The quadratic formula states that the solutions for [tex]\(u\)[/tex] are given by:
[tex]\[ u = \frac{-b \pm \sqrt{\Delta}}{2a} \][/tex]
Plugging in our values:
[tex]\[ u_{1} = \frac{-(-4) + \sqrt{52}}{2 \cdot 9} = \frac{4 + 2\sqrt{13}}{18} = \frac{2 + \sqrt{13}}{9} \approx 0.6228 \][/tex]
[tex]\[ u_{2} = \frac{-(-4) - \sqrt{52}}{2 \cdot 9} = \frac{4 - 2\sqrt{13}}{18} = \frac{2 - \sqrt{13}}{9} \approx -0.1784 \][/tex]
5. Convert [tex]\(u\)[/tex] back to [tex]\(x\)[/tex] using the arccosine function:
To find [tex]\(x\)[/tex], we take the arccosine of both [tex]\(u_{1}\)[/tex] and [tex]\(u_{2}\)[/tex]:
[tex]\[ x_{1} = \arccos(u_{1}) \approx \arccos(0.6228) \approx 0.8984 \, \text{(radians)} \][/tex]
[tex]\[ x_{2} = \arccos(u_{2}) \approx \arccos(-0.1784) \approx 1.7501 \, \text{(radians)} \][/tex]
6. Find additional solutions within the range [tex]\([0, 2\pi)\)[/tex]:
Since the cosine function is periodic and symmetric, we have additional solutions:
[tex]\[ x_{3} = 2\pi - x_{1} = 2\pi - 0.8984 \approx 5.3848 \, \text{(radians)} \][/tex]
[tex]\[ x_{4} = 2\pi - x_{2} = 2\pi - 1.7501 \approx 4.5330 \, \text{(radians)} \][/tex]
Hence, the detailed solutions for [tex]\(x\)[/tex] within the interval [tex]\([0, 2\pi)\)[/tex] are:
- [tex]\( x_{1} \approx 0.8984 \, \text{radians} \)[/tex]
- [tex]\( x_{2} \approx 1.7501 \, \text{radians} \)[/tex]
- [tex]\( x_{3} \approx 5.3848 \, \text{radians} \)[/tex]
- [tex]\( x_{4} \approx 4.5330 \, \text{radians} \)[/tex]
We appreciate your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Thank you for visiting IDNLearn.com. We’re here to provide accurate and reliable answers, so visit us again soon.