Join IDNLearn.com to access a wealth of knowledge and get your questions answered by experts. Discover the reliable solutions you need with help from our comprehensive and accurate Q&A platform.
Sagot :
To solve this problem, let’s follow these steps:
1. Graph the constraints: We will graph the feasible region determined by the constraints.
2. Identify the corner points: Determine the intersection points of the constraints.
3. Evaluate the objective function at the corner points: Calculate the value of the objective function [tex]\(C = 7x - 3y\)[/tex] at each corner point.
4. Determine the maximum value: Identify which point gives the maximum value for the objective function [tex]\(C\)[/tex].
### Step 1: Graph the Constraints
The given constraints are:
1. [tex]\(x \geq 0\)[/tex]
2. [tex]\(y \geq 0\)[/tex]
3. [tex]\(y \leq \frac{1}{5}x + 2\)[/tex]
4. [tex]\(y + x \leq 5\)[/tex]
### Step 2: Identify the Intersection Points
To find the intersection points, we solve the equations derived from the constraints:
#### Intersection of [tex]\( y = \frac{1}{5}x + 2 \)[/tex] and [tex]\( y + x = 5 \)[/tex]:
Set [tex]\(y = \frac{1}{5}x + 2\)[/tex] into [tex]\( y + x = 5\)[/tex]:
[tex]\[ \frac{1}{5}x + 2 + x = 5 \][/tex]
[tex]\[ x + \frac{1}{5}x = 3 \][/tex]
[tex]\[ \frac{6}{5}x = 3 \][/tex]
[tex]\[ x = \frac{5 \cdot 3}{6} = 2.5 \][/tex]
[tex]\[ y = \frac{1}{5}(2.5) + 2 = 2.5 \][/tex]
So, one of the intersection points is [tex]\((2.5, 2.5)\)[/tex].
#### Other points from constraints:
- [tex]\( (0, 2) \)[/tex] : Intersection of [tex]\( y = \frac{1}{5}x + 2 \)[/tex] and [tex]\(x = 0 \)[/tex]
- [tex]\( (5, 0) \)[/tex] : Intersection of [tex]\( y + x = 5 \)[/tex] and [tex]\(y = 0 \)[/tex]
- [tex]\( (0, 0) \)[/tex] : Intersection of [tex]\( y = 0 \)[/tex] and [tex]\(x = 0 \)[/tex]
So, the corner points of the feasible region are:
[tex]\[ (2.5, 2.5), (0, 2), (0, 0), (5, 0) \][/tex]
### Step 3: Evaluate the Objective Function at Each Corner Point
We now calculate the value of the objective function [tex]\(C = 7x - 3y\)[/tex] at each corner point:
- At [tex]\((2.5, 2.5)\)[/tex]:
[tex]\[ C = 7(2.5) - 3(2.5) = 17.5 - 7.5 = 10 \][/tex]
- At [tex]\((0, 2)\)[/tex]:
[tex]\[ C = 7(0) - 3(2) = 0 - 6 = -6 \][/tex]
- At [tex]\((0, 0)\)[/tex]:
[tex]\[ C = 7(0) - 3(0) = 0 \][/tex]
- At [tex]\((5, 0)\)[/tex]:
[tex]\[ C = 7(5) - 3(0) = 35 - 0 = 35 \][/tex]
### Step 4: Determine the Maximum Value
Comparing the values obtained:
[tex]\[ 10, -6, 0, 35 \][/tex]
The maximum value of the objective function is 35 which occurs at the point [tex]\((5, 0)\)[/tex].
### Conclusion
Therefore, the values of [tex]\(x\)[/tex] and [tex]\(y\)[/tex] that maximize the objective function [tex]\(C = 7x - 3y\)[/tex] within the given constraints are:
[tex]\[ x = 5 \quad \text{and} \quad y = 0 \][/tex]
Thus, the maximum value of the objective function is 35 at the point [tex]\((5, 0)\)[/tex].
1. Graph the constraints: We will graph the feasible region determined by the constraints.
2. Identify the corner points: Determine the intersection points of the constraints.
3. Evaluate the objective function at the corner points: Calculate the value of the objective function [tex]\(C = 7x - 3y\)[/tex] at each corner point.
4. Determine the maximum value: Identify which point gives the maximum value for the objective function [tex]\(C\)[/tex].
### Step 1: Graph the Constraints
The given constraints are:
1. [tex]\(x \geq 0\)[/tex]
2. [tex]\(y \geq 0\)[/tex]
3. [tex]\(y \leq \frac{1}{5}x + 2\)[/tex]
4. [tex]\(y + x \leq 5\)[/tex]
### Step 2: Identify the Intersection Points
To find the intersection points, we solve the equations derived from the constraints:
#### Intersection of [tex]\( y = \frac{1}{5}x + 2 \)[/tex] and [tex]\( y + x = 5 \)[/tex]:
Set [tex]\(y = \frac{1}{5}x + 2\)[/tex] into [tex]\( y + x = 5\)[/tex]:
[tex]\[ \frac{1}{5}x + 2 + x = 5 \][/tex]
[tex]\[ x + \frac{1}{5}x = 3 \][/tex]
[tex]\[ \frac{6}{5}x = 3 \][/tex]
[tex]\[ x = \frac{5 \cdot 3}{6} = 2.5 \][/tex]
[tex]\[ y = \frac{1}{5}(2.5) + 2 = 2.5 \][/tex]
So, one of the intersection points is [tex]\((2.5, 2.5)\)[/tex].
#### Other points from constraints:
- [tex]\( (0, 2) \)[/tex] : Intersection of [tex]\( y = \frac{1}{5}x + 2 \)[/tex] and [tex]\(x = 0 \)[/tex]
- [tex]\( (5, 0) \)[/tex] : Intersection of [tex]\( y + x = 5 \)[/tex] and [tex]\(y = 0 \)[/tex]
- [tex]\( (0, 0) \)[/tex] : Intersection of [tex]\( y = 0 \)[/tex] and [tex]\(x = 0 \)[/tex]
So, the corner points of the feasible region are:
[tex]\[ (2.5, 2.5), (0, 2), (0, 0), (5, 0) \][/tex]
### Step 3: Evaluate the Objective Function at Each Corner Point
We now calculate the value of the objective function [tex]\(C = 7x - 3y\)[/tex] at each corner point:
- At [tex]\((2.5, 2.5)\)[/tex]:
[tex]\[ C = 7(2.5) - 3(2.5) = 17.5 - 7.5 = 10 \][/tex]
- At [tex]\((0, 2)\)[/tex]:
[tex]\[ C = 7(0) - 3(2) = 0 - 6 = -6 \][/tex]
- At [tex]\((0, 0)\)[/tex]:
[tex]\[ C = 7(0) - 3(0) = 0 \][/tex]
- At [tex]\((5, 0)\)[/tex]:
[tex]\[ C = 7(5) - 3(0) = 35 - 0 = 35 \][/tex]
### Step 4: Determine the Maximum Value
Comparing the values obtained:
[tex]\[ 10, -6, 0, 35 \][/tex]
The maximum value of the objective function is 35 which occurs at the point [tex]\((5, 0)\)[/tex].
### Conclusion
Therefore, the values of [tex]\(x\)[/tex] and [tex]\(y\)[/tex] that maximize the objective function [tex]\(C = 7x - 3y\)[/tex] within the given constraints are:
[tex]\[ x = 5 \quad \text{and} \quad y = 0 \][/tex]
Thus, the maximum value of the objective function is 35 at the point [tex]\((5, 0)\)[/tex].
We appreciate your contributions to this forum. Don't forget to check back for the latest answers. Keep asking, answering, and sharing useful information. IDNLearn.com has the solutions to your questions. Thanks for stopping by, and come back for more insightful information.