IDNLearn.com offers a comprehensive solution for all your question and answer needs. Discover the reliable solutions you need with help from our comprehensive and accurate Q&A platform.
Sagot :
To answer the question of which exponential function grows at a faster rate than the quadratic function for [tex]\(0 < x < 3\)[/tex], we will analyze given data points and derive the quadratic function, then compare it with an exponential function.
### Step 1: Finding the Quadratic Function
The given data points are:
[tex]\( x = [0, 1, 2, 3] \)[/tex]
[tex]\( y = [0, 3, 12, 27] \)[/tex]
We will use these data points to form a quadratic equation of the form:
[tex]\[ y = ax^2 + bx + c \][/tex]
From the given data, we can deduce the coefficients [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] for the quadratic function.
The coefficients are found to be:
[tex]\( a \approx 3.0 \)[/tex]
[tex]\( b \approx 0 \)[/tex]
[tex]\( c \approx 0 \)[/tex]
So, the quadratic function is:
[tex]\[ y = 3x^2 \][/tex]
### Step 2: Evaluation of Quadratic Function
We will evaluate the values of the quadratic function [tex]\( y = 3x^2 \)[/tex] for several points within the range [tex]\(0 \leq x \leq 3\)[/tex]:
For [tex]\( x \)[/tex] ranging from 0 to 3:
[tex]\[ \begin{align*} y(0) &= 3(0)^2 = 0 \\ y(0.5) &= 3(0.5)^2 = 0.75 \\ y(1) &= 3(1)^2 = 3 \\ y(1.5) &= 3(1.5)^2 = 6.75 \\ y(2) &= 3(2)^2 = 12 \\ y(2.5) &= 3(2.5)^2 = 18.75 \\ y(3) &= 3(3)^2 = 27 \\ \end{align*} \][/tex]
### Step 3: Evaluation of Exponential Function
Consider an exponential function of the form:
[tex]\[ y = e^x \][/tex]
Where [tex]\( e \approx 2.71828 \)[/tex].
Evaluate this function at several points within [tex]\(0 \leq x \leq 3\)[/tex]:
For [tex]\( x \)[/tex] ranging from 0 to 3:
[tex]\[ \begin{align*} y(0) &= e^{0} = 1 \\ y(0.5) &= e^{0.5} \approx 1.64872 \\ y(1) &= e^{1} \approx 2.71828 \\ y(1.5) &= e^{1.5} \approx 4.48169 \\ y(2) &= e^{2} \approx 7.38906 \\ y(2.5) &= e^{2.5} \approx 12.18249 \\ y(3) &= e^{3} \approx 20.08554 \\ \end{align*} \][/tex]
### Step 4: Comparison of Growth Rates
Now we compare the values of the quadratic function [tex]\( y = 3x^2 \)[/tex] and the exponential function [tex]\( y = e^x \)[/tex] over the range [tex]\( 0 \leq x \leq 3 \)[/tex].
[tex]\[ \begin{aligned} &\text{Quadratic Function:} & \quad & \text{Exponential Function:} \\ x & \quad y = 3x^2 & \quad & \quad y = e^x \\ 0 & \quad 0 & \quad & \quad 1 \\ 0.5 & \quad 0.75 & \quad & \quad 1.64872 \\ 1 & \quad 3 & \quad & \quad 2.71828 \\ 1.5 & \quad 6.75 & \quad & \quad 4.48169 \\ 2 & \quad 12 & \quad & \quad 7.38906 \\ 2.5 & \quad 18.75 & \quad & \quad 12.18249 \\ 3 & \quad 27 & \quad & \quad 20.08554 \\ \end{aligned} \][/tex]
From this comparison, we observe:
- At [tex]\( x = 0 \)[/tex], the exponential function starts at 1, while the quadratic function starts at 0.
- As [tex]\( x \)[/tex] increases from 0 to 3, the exponential function [tex]\( y = e^x \)[/tex] grows more rapidly than the quadratic function [tex]\( y = 3x^2 \)[/tex].
Therefore, the exponential function [tex]\( y = e^x \)[/tex] grows at a faster rate than the quadratic function [tex]\( y = 3x^2 \)[/tex] for [tex]\( 0 < x < 3 \)[/tex].
### Step 1: Finding the Quadratic Function
The given data points are:
[tex]\( x = [0, 1, 2, 3] \)[/tex]
[tex]\( y = [0, 3, 12, 27] \)[/tex]
We will use these data points to form a quadratic equation of the form:
[tex]\[ y = ax^2 + bx + c \][/tex]
From the given data, we can deduce the coefficients [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] for the quadratic function.
The coefficients are found to be:
[tex]\( a \approx 3.0 \)[/tex]
[tex]\( b \approx 0 \)[/tex]
[tex]\( c \approx 0 \)[/tex]
So, the quadratic function is:
[tex]\[ y = 3x^2 \][/tex]
### Step 2: Evaluation of Quadratic Function
We will evaluate the values of the quadratic function [tex]\( y = 3x^2 \)[/tex] for several points within the range [tex]\(0 \leq x \leq 3\)[/tex]:
For [tex]\( x \)[/tex] ranging from 0 to 3:
[tex]\[ \begin{align*} y(0) &= 3(0)^2 = 0 \\ y(0.5) &= 3(0.5)^2 = 0.75 \\ y(1) &= 3(1)^2 = 3 \\ y(1.5) &= 3(1.5)^2 = 6.75 \\ y(2) &= 3(2)^2 = 12 \\ y(2.5) &= 3(2.5)^2 = 18.75 \\ y(3) &= 3(3)^2 = 27 \\ \end{align*} \][/tex]
### Step 3: Evaluation of Exponential Function
Consider an exponential function of the form:
[tex]\[ y = e^x \][/tex]
Where [tex]\( e \approx 2.71828 \)[/tex].
Evaluate this function at several points within [tex]\(0 \leq x \leq 3\)[/tex]:
For [tex]\( x \)[/tex] ranging from 0 to 3:
[tex]\[ \begin{align*} y(0) &= e^{0} = 1 \\ y(0.5) &= e^{0.5} \approx 1.64872 \\ y(1) &= e^{1} \approx 2.71828 \\ y(1.5) &= e^{1.5} \approx 4.48169 \\ y(2) &= e^{2} \approx 7.38906 \\ y(2.5) &= e^{2.5} \approx 12.18249 \\ y(3) &= e^{3} \approx 20.08554 \\ \end{align*} \][/tex]
### Step 4: Comparison of Growth Rates
Now we compare the values of the quadratic function [tex]\( y = 3x^2 \)[/tex] and the exponential function [tex]\( y = e^x \)[/tex] over the range [tex]\( 0 \leq x \leq 3 \)[/tex].
[tex]\[ \begin{aligned} &\text{Quadratic Function:} & \quad & \text{Exponential Function:} \\ x & \quad y = 3x^2 & \quad & \quad y = e^x \\ 0 & \quad 0 & \quad & \quad 1 \\ 0.5 & \quad 0.75 & \quad & \quad 1.64872 \\ 1 & \quad 3 & \quad & \quad 2.71828 \\ 1.5 & \quad 6.75 & \quad & \quad 4.48169 \\ 2 & \quad 12 & \quad & \quad 7.38906 \\ 2.5 & \quad 18.75 & \quad & \quad 12.18249 \\ 3 & \quad 27 & \quad & \quad 20.08554 \\ \end{aligned} \][/tex]
From this comparison, we observe:
- At [tex]\( x = 0 \)[/tex], the exponential function starts at 1, while the quadratic function starts at 0.
- As [tex]\( x \)[/tex] increases from 0 to 3, the exponential function [tex]\( y = e^x \)[/tex] grows more rapidly than the quadratic function [tex]\( y = 3x^2 \)[/tex].
Therefore, the exponential function [tex]\( y = e^x \)[/tex] grows at a faster rate than the quadratic function [tex]\( y = 3x^2 \)[/tex] for [tex]\( 0 < x < 3 \)[/tex].
Thank you for using this platform to share and learn. Don't hesitate to keep asking and answering. We value every contribution you make. For dependable answers, trust IDNLearn.com. Thank you for visiting, and we look forward to assisting you again.