Discover new perspectives and gain insights with IDNLearn.com's diverse answers. Ask any question and get a thorough, accurate answer from our community of experienced professionals.
Sagot :
To determine the mass of the tin sample, we start by clearly understanding and applying the problem's given details alongside the formula [tex]\( q = m C_p \Delta T \)[/tex].
Given values:
- Specific heat capacity ([tex]\( C_p \)[/tex]) of tin: [tex]\( 0.227 \, \text{J} / \text{g} \cdot {}^{\circ}C \)[/tex]
- Energy released ([tex]\( q \)[/tex]): [tex]\( 543 \, \text{J} \)[/tex]
- Initial temperature ([tex]\( T_{\text{initial}} \)[/tex]): [tex]\( 15.0^{\circ}C \)[/tex]
- Final temperature ([tex]\( T_{\text{final}} \)[/tex]): [tex]\( -10.0^{\circ}C \)[/tex]
Step-by-step solution:
1. Calculate the change in temperature ([tex]\( \Delta T \)[/tex]):
[tex]\[ \Delta T = T_{\text{final}} - T_{\text{initial}} \][/tex]
[tex]\[ \Delta T = -10.0^{\circ}C - 15.0^{\circ}C \][/tex]
[tex]\[ \Delta T = -25.0^{\circ}C \][/tex]
The change in temperature is [tex]\(-25.0^{\circ}C\)[/tex].
2. Rearrange the formula [tex]\( q = m C_p \Delta T \)[/tex] to solve for mass ([tex]\( m \)[/tex]):
[tex]\[ m = \frac{q}{C_p \Delta T} \][/tex]
3. Substitute the known values into the formula:
[tex]\[ m = \frac{543 \, \text{J}}{0.227 \, \text{J} / \text{g} \cdot {}^{\circ}C \times (-25.0^{\circ}C)} \][/tex]
4. Perform the calculation:
[tex]\[ m = \frac{543}{0.227 \times (-25.0)} \][/tex]
[tex]\[ m = \frac{543}{-5.675} \][/tex]
[tex]\[ m \approx -95.68281938325991 \, \text{g} \][/tex]
5. Round the mass to three significant figures:
[tex]\[ m \approx -95.683 \, \text{g} \][/tex]
However, since mass cannot be negative, it indicates we consider the absolute value when dealing with magnitude:
[tex]\[ m = 95.683 \, \text{g} \][/tex]
Therefore, the mass of the tin sample is [tex]\(\boxed{95.683} \, \text{g}\)[/tex].
Given values:
- Specific heat capacity ([tex]\( C_p \)[/tex]) of tin: [tex]\( 0.227 \, \text{J} / \text{g} \cdot {}^{\circ}C \)[/tex]
- Energy released ([tex]\( q \)[/tex]): [tex]\( 543 \, \text{J} \)[/tex]
- Initial temperature ([tex]\( T_{\text{initial}} \)[/tex]): [tex]\( 15.0^{\circ}C \)[/tex]
- Final temperature ([tex]\( T_{\text{final}} \)[/tex]): [tex]\( -10.0^{\circ}C \)[/tex]
Step-by-step solution:
1. Calculate the change in temperature ([tex]\( \Delta T \)[/tex]):
[tex]\[ \Delta T = T_{\text{final}} - T_{\text{initial}} \][/tex]
[tex]\[ \Delta T = -10.0^{\circ}C - 15.0^{\circ}C \][/tex]
[tex]\[ \Delta T = -25.0^{\circ}C \][/tex]
The change in temperature is [tex]\(-25.0^{\circ}C\)[/tex].
2. Rearrange the formula [tex]\( q = m C_p \Delta T \)[/tex] to solve for mass ([tex]\( m \)[/tex]):
[tex]\[ m = \frac{q}{C_p \Delta T} \][/tex]
3. Substitute the known values into the formula:
[tex]\[ m = \frac{543 \, \text{J}}{0.227 \, \text{J} / \text{g} \cdot {}^{\circ}C \times (-25.0^{\circ}C)} \][/tex]
4. Perform the calculation:
[tex]\[ m = \frac{543}{0.227 \times (-25.0)} \][/tex]
[tex]\[ m = \frac{543}{-5.675} \][/tex]
[tex]\[ m \approx -95.68281938325991 \, \text{g} \][/tex]
5. Round the mass to three significant figures:
[tex]\[ m \approx -95.683 \, \text{g} \][/tex]
However, since mass cannot be negative, it indicates we consider the absolute value when dealing with magnitude:
[tex]\[ m = 95.683 \, \text{g} \][/tex]
Therefore, the mass of the tin sample is [tex]\(\boxed{95.683} \, \text{g}\)[/tex].
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. IDNLearn.com has the answers you need. Thank you for visiting, and we look forward to helping you again soon.