Connect with a global community of knowledgeable individuals on IDNLearn.com. Find the solutions you need quickly and accurately with help from our knowledgeable community.
Sagot :
To solve the system of equations using the matrix tool, we start by writing the system in the form of [tex]\[A\mathbf{x} = \mathbf{b}\][/tex] where [tex]\(A\)[/tex] is the coefficient matrix, [tex]\(\mathbf{x}\)[/tex] is the vector of variables, and [tex]\(\mathbf{b}\)[/tex] is the constants vector.
The given system of linear equations is:
[tex]\[ \begin{array}{rcl} 4x + 11y &=& -5 \\ 4x + 8y &=& -8 \end{array} \][/tex]
First, identify the coefficient matrix [tex]\(A\)[/tex], the variables vector [tex]\(\mathbf{x}\)[/tex], and the constants vector [tex]\(\mathbf{b}\)[/tex]:
[tex]\[ \begin{pmatrix} 4 & 11 \\ 4 & 8 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -5 \\ -8 \end{pmatrix} \][/tex]
Here,
[tex]\[ A = \begin{pmatrix} 4 & 11 \\ 4 & 8 \end{pmatrix}, \quad \mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} -5 \\ -8 \end{pmatrix} \][/tex]
We can use the matrix method to find [tex]\(\mathbf{x} = A^{-1}\mathbf{b}\)[/tex], where [tex]\(A^{-1}\)[/tex] is the inverse of the coefficient matrix [tex]\(A\)[/tex].
To find the inverse of [tex]\(A\)[/tex], first calculate the determinant of [tex]\(A\)[/tex]:
[tex]\[ \text{det}(A) = (4 \cdot 8) - (4 \cdot 11) = 32 - 44 = -12 \][/tex]
Since the determinant is non-zero, the inverse of [tex]\(A\)[/tex] exists. Now, calculate the inverse of the matrix [tex]\(A\)[/tex]:
[tex]\[ A^{-1} = \frac{1}{\text{det}(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \frac{1}{-12} \begin{pmatrix} 8 & -11 \\ -4 & 4 \end{pmatrix} = \begin{pmatrix} -\frac{2}{3} & \frac{11}{12} \\ \frac{1}{3} & -\frac{1}{3} \end{pmatrix} \][/tex]
Now, multiply [tex]\(A^{-1}\)[/tex] by [tex]\(\mathbf{b}\)[/tex]:
[tex]\[ \mathbf{x} = A^{-1} \mathbf{b} = \begin{pmatrix} -\frac{2}{3} & \frac{11}{12} \\ \frac{1}{3} & -\frac{1}{3} \end{pmatrix} \begin{pmatrix} -5 \\ -8 \end{pmatrix} \][/tex]
Perform the matrix multiplication:
[tex]\[ \begin{pmatrix} -\frac{2}{3} & \frac{11}{12} \\ \frac{1}{3} & -\frac{1}{3} \end{pmatrix} \begin{pmatrix} -5 \\ -8 \end{pmatrix} = \begin{pmatrix} (-\frac{2}{3}) \cdot (-5) + \frac{11}{12} \cdot (-8) \\ (\frac{1}{3}) \cdot (-5) + (-\frac{1}{3}) \cdot (-8) \end{pmatrix} \][/tex]
Calculate each element step-by-step:
[tex]\[ \begin{pmatrix} \frac{10}{3} - \frac{88}{12} \\ -\frac{5}{3} + \frac{8}{3} \end{pmatrix} = \begin{pmatrix} \frac{10}{3} - \frac{22}{3} \\ \frac{3}{3} \end{pmatrix} = \begin{pmatrix} -\frac{12}{3} \\ 1 \end{pmatrix} = \begin{pmatrix} -4 \\ 1 \end{pmatrix} \][/tex]
Thus, the solution to the given system of equations is the ordered pair [tex]\((-4, 1)\)[/tex].
Therefore, the solution is:
[tex]\[ \boxed{(-4, 1)} \][/tex]
The given system of linear equations is:
[tex]\[ \begin{array}{rcl} 4x + 11y &=& -5 \\ 4x + 8y &=& -8 \end{array} \][/tex]
First, identify the coefficient matrix [tex]\(A\)[/tex], the variables vector [tex]\(\mathbf{x}\)[/tex], and the constants vector [tex]\(\mathbf{b}\)[/tex]:
[tex]\[ \begin{pmatrix} 4 & 11 \\ 4 & 8 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -5 \\ -8 \end{pmatrix} \][/tex]
Here,
[tex]\[ A = \begin{pmatrix} 4 & 11 \\ 4 & 8 \end{pmatrix}, \quad \mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} -5 \\ -8 \end{pmatrix} \][/tex]
We can use the matrix method to find [tex]\(\mathbf{x} = A^{-1}\mathbf{b}\)[/tex], where [tex]\(A^{-1}\)[/tex] is the inverse of the coefficient matrix [tex]\(A\)[/tex].
To find the inverse of [tex]\(A\)[/tex], first calculate the determinant of [tex]\(A\)[/tex]:
[tex]\[ \text{det}(A) = (4 \cdot 8) - (4 \cdot 11) = 32 - 44 = -12 \][/tex]
Since the determinant is non-zero, the inverse of [tex]\(A\)[/tex] exists. Now, calculate the inverse of the matrix [tex]\(A\)[/tex]:
[tex]\[ A^{-1} = \frac{1}{\text{det}(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \frac{1}{-12} \begin{pmatrix} 8 & -11 \\ -4 & 4 \end{pmatrix} = \begin{pmatrix} -\frac{2}{3} & \frac{11}{12} \\ \frac{1}{3} & -\frac{1}{3} \end{pmatrix} \][/tex]
Now, multiply [tex]\(A^{-1}\)[/tex] by [tex]\(\mathbf{b}\)[/tex]:
[tex]\[ \mathbf{x} = A^{-1} \mathbf{b} = \begin{pmatrix} -\frac{2}{3} & \frac{11}{12} \\ \frac{1}{3} & -\frac{1}{3} \end{pmatrix} \begin{pmatrix} -5 \\ -8 \end{pmatrix} \][/tex]
Perform the matrix multiplication:
[tex]\[ \begin{pmatrix} -\frac{2}{3} & \frac{11}{12} \\ \frac{1}{3} & -\frac{1}{3} \end{pmatrix} \begin{pmatrix} -5 \\ -8 \end{pmatrix} = \begin{pmatrix} (-\frac{2}{3}) \cdot (-5) + \frac{11}{12} \cdot (-8) \\ (\frac{1}{3}) \cdot (-5) + (-\frac{1}{3}) \cdot (-8) \end{pmatrix} \][/tex]
Calculate each element step-by-step:
[tex]\[ \begin{pmatrix} \frac{10}{3} - \frac{88}{12} \\ -\frac{5}{3} + \frac{8}{3} \end{pmatrix} = \begin{pmatrix} \frac{10}{3} - \frac{22}{3} \\ \frac{3}{3} \end{pmatrix} = \begin{pmatrix} -\frac{12}{3} \\ 1 \end{pmatrix} = \begin{pmatrix} -4 \\ 1 \end{pmatrix} \][/tex]
Thus, the solution to the given system of equations is the ordered pair [tex]\((-4, 1)\)[/tex].
Therefore, the solution is:
[tex]\[ \boxed{(-4, 1)} \][/tex]
Thank you for joining our conversation. Don't hesitate to return anytime to find answers to your questions. Let's continue sharing knowledge and experiences! For trustworthy answers, rely on IDNLearn.com. Thanks for visiting, and we look forward to assisting you again.