IDNLearn.com: Your one-stop platform for getting reliable answers to any question. Discover the information you need from our experienced professionals who provide accurate and reliable answers to all your questions.
Sagot :
To determine which equation models the distance [tex]\( d \)[/tex] of the weight from its equilibrium after [tex]\( t \)[/tex] seconds, we need to find an equation that satisfies the conditions provided: the weight is 9 inches below equilibrium at [tex]\( t = 0 \)[/tex] and returns to this position after [tex]\( t = 3 \)[/tex] seconds.
Given equations:
1. [tex]\( d = -9 \cos \left( \frac{\pi}{3} t \right) \)[/tex]
2. [tex]\( d = -9 \cos \left( \frac{2\pi}{3} t \right) \)[/tex]
3. [tex]\( d = -3 \cos \left( \frac{\pi}{9} t \right) \)[/tex]
4. [tex]\( d = -3 \cos \left( \frac{2\pi}{9} t \right) \)[/tex]
Let's test each equation separately:
### 1. [tex]\( d = -9 \cos \left( \frac{\pi}{3} t \right) \)[/tex]
At [tex]\( t = 0 \)[/tex]:
[tex]\[ d = -9 \cos \left( \frac{\pi}{3} \times 0 \right) = -9 \cos(0) = -9 \times 1 = -9 \][/tex]
This satisfies the condition at [tex]\( t = 0 \)[/tex].
At [tex]\( t = 3 \)[/tex]:
[tex]\[ d = -9 \cos \left( \frac{\pi}{3} \times 3 \right) = -9 \cos(\pi) = -9 \times -1 = 9 \][/tex]
This does not match the condition at [tex]\( t = 3 \)[/tex] since we need [tex]\( d = -9 \)[/tex].
### 2. [tex]\( d = -9 \cos \left( \frac{2\pi}{3} t \right) \)[/tex]
At [tex]\( t = 0 \)[/tex]:
[tex]\[ d = -9 \cos \left( \frac{2\pi}{3} \times 0 \right) = -9 \cos(0) = -9 \times 1 = -9 \][/tex]
This satisfies the condition at [tex]\( t = 0 \)[/tex].
At [tex]\( t = 3 \)[/tex]:
[tex]\[ d = -9 \cos \left( \frac{2\pi}{3} \times 3 \right) = -9 \cos(2\pi) = -9 \times 1 = -9 \][/tex]
This satisfies the condition at [tex]\( t = 3 \)[/tex].
### 3. [tex]\( d = -3 \cos \left( \frac{\pi}{9} t \right) \)[/tex]
At [tex]\( t = 0 \)[/tex]:
[tex]\[ d = -3 \cos \left( \frac{\pi}{9} \times 0 \right) = -3 \cos(0) = -3 \times 1 = -3 \][/tex]
This does not match the condition at [tex]\( t = 0 \)[/tex].
### 4. [tex]\( d = -3 \cos \left( \frac{2\pi}{9} t \right) \)[/tex]
At [tex]\( t = 0 \)[/tex]:
[tex]\[ d = -3 \cos \left( \frac{2\pi}{9} \times 0 \right) = -3 \cos(0) = -3 \times 1 = -3 \][/tex]
This does not match the condition at [tex]\( t = 0 \)[/tex].
Only the second equation [tex]\( d = -9 \cos \left( \frac{2\pi}{3} t \right) \)[/tex] satisfies the condition both at [tex]\( t = 0 \)[/tex] and [tex]\( t = 3 \)[/tex] seconds. Thus, the correct equation that models the distance [tex]\( d \)[/tex] of the weight from its equilibrium after [tex]\( t \)[/tex] seconds is:
[tex]\[ d = -9 \cos \left( \frac{2\pi}{3} t \right) \][/tex]
Given equations:
1. [tex]\( d = -9 \cos \left( \frac{\pi}{3} t \right) \)[/tex]
2. [tex]\( d = -9 \cos \left( \frac{2\pi}{3} t \right) \)[/tex]
3. [tex]\( d = -3 \cos \left( \frac{\pi}{9} t \right) \)[/tex]
4. [tex]\( d = -3 \cos \left( \frac{2\pi}{9} t \right) \)[/tex]
Let's test each equation separately:
### 1. [tex]\( d = -9 \cos \left( \frac{\pi}{3} t \right) \)[/tex]
At [tex]\( t = 0 \)[/tex]:
[tex]\[ d = -9 \cos \left( \frac{\pi}{3} \times 0 \right) = -9 \cos(0) = -9 \times 1 = -9 \][/tex]
This satisfies the condition at [tex]\( t = 0 \)[/tex].
At [tex]\( t = 3 \)[/tex]:
[tex]\[ d = -9 \cos \left( \frac{\pi}{3} \times 3 \right) = -9 \cos(\pi) = -9 \times -1 = 9 \][/tex]
This does not match the condition at [tex]\( t = 3 \)[/tex] since we need [tex]\( d = -9 \)[/tex].
### 2. [tex]\( d = -9 \cos \left( \frac{2\pi}{3} t \right) \)[/tex]
At [tex]\( t = 0 \)[/tex]:
[tex]\[ d = -9 \cos \left( \frac{2\pi}{3} \times 0 \right) = -9 \cos(0) = -9 \times 1 = -9 \][/tex]
This satisfies the condition at [tex]\( t = 0 \)[/tex].
At [tex]\( t = 3 \)[/tex]:
[tex]\[ d = -9 \cos \left( \frac{2\pi}{3} \times 3 \right) = -9 \cos(2\pi) = -9 \times 1 = -9 \][/tex]
This satisfies the condition at [tex]\( t = 3 \)[/tex].
### 3. [tex]\( d = -3 \cos \left( \frac{\pi}{9} t \right) \)[/tex]
At [tex]\( t = 0 \)[/tex]:
[tex]\[ d = -3 \cos \left( \frac{\pi}{9} \times 0 \right) = -3 \cos(0) = -3 \times 1 = -3 \][/tex]
This does not match the condition at [tex]\( t = 0 \)[/tex].
### 4. [tex]\( d = -3 \cos \left( \frac{2\pi}{9} t \right) \)[/tex]
At [tex]\( t = 0 \)[/tex]:
[tex]\[ d = -3 \cos \left( \frac{2\pi}{9} \times 0 \right) = -3 \cos(0) = -3 \times 1 = -3 \][/tex]
This does not match the condition at [tex]\( t = 0 \)[/tex].
Only the second equation [tex]\( d = -9 \cos \left( \frac{2\pi}{3} t \right) \)[/tex] satisfies the condition both at [tex]\( t = 0 \)[/tex] and [tex]\( t = 3 \)[/tex] seconds. Thus, the correct equation that models the distance [tex]\( d \)[/tex] of the weight from its equilibrium after [tex]\( t \)[/tex] seconds is:
[tex]\[ d = -9 \cos \left( \frac{2\pi}{3} t \right) \][/tex]
Thank you for using this platform to share and learn. Don't hesitate to keep asking and answering. We value every contribution you make. IDNLearn.com has the solutions to your questions. Thanks for stopping by, and come back for more insightful information.