From personal advice to professional guidance, IDNLearn.com has the answers you seek. Get the information you need from our community of experts who provide accurate and comprehensive answers to all your questions.

A weight attached to a spring is at its lowest point, 9 inches below equilibrium, at time [tex]\( t=0 \)[/tex] seconds. When the weight is released, it oscillates and returns to its original position at [tex]\( t=3 \)[/tex] seconds.

Which of the following equations models the distance, [tex]\( d \)[/tex], of the weight from its equilibrium after [tex]\( t \)[/tex] seconds?

A. [tex]\( d = -9 \cos \left(\frac{\pi}{3} t\right) \)[/tex]

B. [tex]\( d = -9 \cos \left(\frac{2 \pi}{3} t\right) \)[/tex]

C. [tex]\( d = -3 \cos \left(\frac{\pi}{9} t\right) \)[/tex]

D. [tex]\( d = -3 \cos \left(\frac{2 \pi}{9} t\right) \)[/tex]


Sagot :

To determine which equation models the distance [tex]\( d \)[/tex] of the weight from its equilibrium after [tex]\( t \)[/tex] seconds, we need to find an equation that satisfies the conditions provided: the weight is 9 inches below equilibrium at [tex]\( t = 0 \)[/tex] and returns to this position after [tex]\( t = 3 \)[/tex] seconds.

Given equations:
1. [tex]\( d = -9 \cos \left( \frac{\pi}{3} t \right) \)[/tex]
2. [tex]\( d = -9 \cos \left( \frac{2\pi}{3} t \right) \)[/tex]
3. [tex]\( d = -3 \cos \left( \frac{\pi}{9} t \right) \)[/tex]
4. [tex]\( d = -3 \cos \left( \frac{2\pi}{9} t \right) \)[/tex]

Let's test each equation separately:

### 1. [tex]\( d = -9 \cos \left( \frac{\pi}{3} t \right) \)[/tex]

At [tex]\( t = 0 \)[/tex]:
[tex]\[ d = -9 \cos \left( \frac{\pi}{3} \times 0 \right) = -9 \cos(0) = -9 \times 1 = -9 \][/tex]
This satisfies the condition at [tex]\( t = 0 \)[/tex].

At [tex]\( t = 3 \)[/tex]:
[tex]\[ d = -9 \cos \left( \frac{\pi}{3} \times 3 \right) = -9 \cos(\pi) = -9 \times -1 = 9 \][/tex]
This does not match the condition at [tex]\( t = 3 \)[/tex] since we need [tex]\( d = -9 \)[/tex].

### 2. [tex]\( d = -9 \cos \left( \frac{2\pi}{3} t \right) \)[/tex]

At [tex]\( t = 0 \)[/tex]:
[tex]\[ d = -9 \cos \left( \frac{2\pi}{3} \times 0 \right) = -9 \cos(0) = -9 \times 1 = -9 \][/tex]
This satisfies the condition at [tex]\( t = 0 \)[/tex].

At [tex]\( t = 3 \)[/tex]:
[tex]\[ d = -9 \cos \left( \frac{2\pi}{3} \times 3 \right) = -9 \cos(2\pi) = -9 \times 1 = -9 \][/tex]
This satisfies the condition at [tex]\( t = 3 \)[/tex].

### 3. [tex]\( d = -3 \cos \left( \frac{\pi}{9} t \right) \)[/tex]

At [tex]\( t = 0 \)[/tex]:
[tex]\[ d = -3 \cos \left( \frac{\pi}{9} \times 0 \right) = -3 \cos(0) = -3 \times 1 = -3 \][/tex]
This does not match the condition at [tex]\( t = 0 \)[/tex].

### 4. [tex]\( d = -3 \cos \left( \frac{2\pi}{9} t \right) \)[/tex]

At [tex]\( t = 0 \)[/tex]:
[tex]\[ d = -3 \cos \left( \frac{2\pi}{9} \times 0 \right) = -3 \cos(0) = -3 \times 1 = -3 \][/tex]
This does not match the condition at [tex]\( t = 0 \)[/tex].

Only the second equation [tex]\( d = -9 \cos \left( \frac{2\pi}{3} t \right) \)[/tex] satisfies the condition both at [tex]\( t = 0 \)[/tex] and [tex]\( t = 3 \)[/tex] seconds. Thus, the correct equation that models the distance [tex]\( d \)[/tex] of the weight from its equilibrium after [tex]\( t \)[/tex] seconds is:

[tex]\[ d = -9 \cos \left( \frac{2\pi}{3} t \right) \][/tex]