From simple queries to complex problems, IDNLearn.com provides reliable answers. Get step-by-step guidance for all your technical questions from our knowledgeable community members.
Sagot :
To find the pH of a 0.415 M solution of disodium citrate (Na[tex]\(_2\)[/tex]C[tex]\(_6\)[/tex]H[tex]\(_6\)[/tex]O[tex]\(_7\)[/tex]), we can utilize the properties of citric acid (C[tex]\(_6\)[/tex]H[tex]\(_8\)[/tex]O[tex]\(_7\)[/tex]) and its dissociation constants. Citric acid has three dissociation constants, represented as [tex]\( K_{a1} \)[/tex], [tex]\( K_{a2} \)[/tex], and [tex]\( K_{a3} \)[/tex].
Given:
[tex]\( K_{a1} = 7.44 \times 10^{-4} \)[/tex]
[tex]\( K_{a2} = 1.73 \times 10^{-5} \)[/tex]
[tex]\( K_{a3} = 4.02 \times 10^{-7} \)[/tex]
Concentration of disodium citrate, [tex]\( [ \text{Na}_2\text{C}_6\text{H}_6\text{O}_7 ] = 0.415 \, M \)[/tex]
### Step-by-Step Solution:
1. Identify the Predominant Species:
Disodium citrate (Na[tex]\(_2\)[/tex]C[tex]\(_6\)[/tex]H[tex]\(_6\)[/tex]O[tex]\(_7\)[/tex]) will dissociate in water, primarily forming H[tex]\(_2\)[/tex]C[tex]\(_6\)[/tex]H[tex]\(_5\)[/tex]O[tex]\(_7^-\)[/tex] ions. The most significant [tex]$\text{H}^+$[/tex] ion contribution will come from the first dissociation constant ([tex]\( K_{a1} \)[/tex]).
2. Approximation of Dominant Equilibrium:
For this predominant species H[tex]\(_2\)[/tex]C[tex]\(_6\)[/tex]H[tex]\(_5\)[/tex]O[tex]\(_7^-\)[/tex], we can use the approximation for the dominant equilibrium involving [tex]\( K_{a1} \)[/tex]:
[tex]\[ \text{H}_2\text{C}_6\text{H}_5\text{O}_7^- \leftrightarrow \text{H}^+ + \text{HC}_6\text{H}_5\text{O}_7^{2-} \][/tex]
Using the formula for the concentration of hydrogen ions [tex]\( [\text{H}^+] \)[/tex]:
[tex]\[ [\text{H}^+] = \sqrt{K_{a1} \cdot [\text{Na}_2\text{C}_6\text{H}_6\text{O}_7 ]} \][/tex]
Substituting the given values:
[tex]\[ [\text{H}^+] = \sqrt{7.44 \times 10^{-4} \cdot 0.415} \][/tex]
Computing the result:
[tex]\[ [\text{H}^+] \approx 0.01757 \, M \][/tex]
3. Calculate the pH:
The pH of the solution can be calculated using the formula:
[tex]\[ \text{pH} = -\log_{10}[\text{H}^+] \][/tex]
Substituting the concentration of hydrogen ions:
[tex]\[ \text{pH} = -\log_{10}(0.01757) \][/tex]
Computing the result:
[tex]\[ \text{pH} \approx 1.755 \][/tex]
### Final Results:
- The concentration of disodium citrate: [tex]\(0.415 \, M\)[/tex]
- The concentration of hydrogen ions: [tex]\(0.01757 \, M\)[/tex]
- The pH of the solution: [tex]\(1.755\)[/tex]
Thus, the pH of the 0.415 M solution of disodium citrate is approximately [tex]\(1.755\)[/tex].
Given:
[tex]\( K_{a1} = 7.44 \times 10^{-4} \)[/tex]
[tex]\( K_{a2} = 1.73 \times 10^{-5} \)[/tex]
[tex]\( K_{a3} = 4.02 \times 10^{-7} \)[/tex]
Concentration of disodium citrate, [tex]\( [ \text{Na}_2\text{C}_6\text{H}_6\text{O}_7 ] = 0.415 \, M \)[/tex]
### Step-by-Step Solution:
1. Identify the Predominant Species:
Disodium citrate (Na[tex]\(_2\)[/tex]C[tex]\(_6\)[/tex]H[tex]\(_6\)[/tex]O[tex]\(_7\)[/tex]) will dissociate in water, primarily forming H[tex]\(_2\)[/tex]C[tex]\(_6\)[/tex]H[tex]\(_5\)[/tex]O[tex]\(_7^-\)[/tex] ions. The most significant [tex]$\text{H}^+$[/tex] ion contribution will come from the first dissociation constant ([tex]\( K_{a1} \)[/tex]).
2. Approximation of Dominant Equilibrium:
For this predominant species H[tex]\(_2\)[/tex]C[tex]\(_6\)[/tex]H[tex]\(_5\)[/tex]O[tex]\(_7^-\)[/tex], we can use the approximation for the dominant equilibrium involving [tex]\( K_{a1} \)[/tex]:
[tex]\[ \text{H}_2\text{C}_6\text{H}_5\text{O}_7^- \leftrightarrow \text{H}^+ + \text{HC}_6\text{H}_5\text{O}_7^{2-} \][/tex]
Using the formula for the concentration of hydrogen ions [tex]\( [\text{H}^+] \)[/tex]:
[tex]\[ [\text{H}^+] = \sqrt{K_{a1} \cdot [\text{Na}_2\text{C}_6\text{H}_6\text{O}_7 ]} \][/tex]
Substituting the given values:
[tex]\[ [\text{H}^+] = \sqrt{7.44 \times 10^{-4} \cdot 0.415} \][/tex]
Computing the result:
[tex]\[ [\text{H}^+] \approx 0.01757 \, M \][/tex]
3. Calculate the pH:
The pH of the solution can be calculated using the formula:
[tex]\[ \text{pH} = -\log_{10}[\text{H}^+] \][/tex]
Substituting the concentration of hydrogen ions:
[tex]\[ \text{pH} = -\log_{10}(0.01757) \][/tex]
Computing the result:
[tex]\[ \text{pH} \approx 1.755 \][/tex]
### Final Results:
- The concentration of disodium citrate: [tex]\(0.415 \, M\)[/tex]
- The concentration of hydrogen ions: [tex]\(0.01757 \, M\)[/tex]
- The pH of the solution: [tex]\(1.755\)[/tex]
Thus, the pH of the 0.415 M solution of disodium citrate is approximately [tex]\(1.755\)[/tex].
We appreciate your contributions to this forum. Don't forget to check back for the latest answers. Keep asking, answering, and sharing useful information. IDNLearn.com is your source for precise answers. Thank you for visiting, and we look forward to helping you again soon.