IDNLearn.com connects you with a community of knowledgeable individuals ready to help. Join our interactive community and get comprehensive, reliable answers to all your questions.
Sagot :
To find the pH of a 0.415 M solution of disodium citrate (Na[tex]\(_2\)[/tex]C[tex]\(_6\)[/tex]H[tex]\(_6\)[/tex]O[tex]\(_7\)[/tex]), we can utilize the properties of citric acid (C[tex]\(_6\)[/tex]H[tex]\(_8\)[/tex]O[tex]\(_7\)[/tex]) and its dissociation constants. Citric acid has three dissociation constants, represented as [tex]\( K_{a1} \)[/tex], [tex]\( K_{a2} \)[/tex], and [tex]\( K_{a3} \)[/tex].
Given:
[tex]\( K_{a1} = 7.44 \times 10^{-4} \)[/tex]
[tex]\( K_{a2} = 1.73 \times 10^{-5} \)[/tex]
[tex]\( K_{a3} = 4.02 \times 10^{-7} \)[/tex]
Concentration of disodium citrate, [tex]\( [ \text{Na}_2\text{C}_6\text{H}_6\text{O}_7 ] = 0.415 \, M \)[/tex]
### Step-by-Step Solution:
1. Identify the Predominant Species:
Disodium citrate (Na[tex]\(_2\)[/tex]C[tex]\(_6\)[/tex]H[tex]\(_6\)[/tex]O[tex]\(_7\)[/tex]) will dissociate in water, primarily forming H[tex]\(_2\)[/tex]C[tex]\(_6\)[/tex]H[tex]\(_5\)[/tex]O[tex]\(_7^-\)[/tex] ions. The most significant [tex]$\text{H}^+$[/tex] ion contribution will come from the first dissociation constant ([tex]\( K_{a1} \)[/tex]).
2. Approximation of Dominant Equilibrium:
For this predominant species H[tex]\(_2\)[/tex]C[tex]\(_6\)[/tex]H[tex]\(_5\)[/tex]O[tex]\(_7^-\)[/tex], we can use the approximation for the dominant equilibrium involving [tex]\( K_{a1} \)[/tex]:
[tex]\[ \text{H}_2\text{C}_6\text{H}_5\text{O}_7^- \leftrightarrow \text{H}^+ + \text{HC}_6\text{H}_5\text{O}_7^{2-} \][/tex]
Using the formula for the concentration of hydrogen ions [tex]\( [\text{H}^+] \)[/tex]:
[tex]\[ [\text{H}^+] = \sqrt{K_{a1} \cdot [\text{Na}_2\text{C}_6\text{H}_6\text{O}_7 ]} \][/tex]
Substituting the given values:
[tex]\[ [\text{H}^+] = \sqrt{7.44 \times 10^{-4} \cdot 0.415} \][/tex]
Computing the result:
[tex]\[ [\text{H}^+] \approx 0.01757 \, M \][/tex]
3. Calculate the pH:
The pH of the solution can be calculated using the formula:
[tex]\[ \text{pH} = -\log_{10}[\text{H}^+] \][/tex]
Substituting the concentration of hydrogen ions:
[tex]\[ \text{pH} = -\log_{10}(0.01757) \][/tex]
Computing the result:
[tex]\[ \text{pH} \approx 1.755 \][/tex]
### Final Results:
- The concentration of disodium citrate: [tex]\(0.415 \, M\)[/tex]
- The concentration of hydrogen ions: [tex]\(0.01757 \, M\)[/tex]
- The pH of the solution: [tex]\(1.755\)[/tex]
Thus, the pH of the 0.415 M solution of disodium citrate is approximately [tex]\(1.755\)[/tex].
Given:
[tex]\( K_{a1} = 7.44 \times 10^{-4} \)[/tex]
[tex]\( K_{a2} = 1.73 \times 10^{-5} \)[/tex]
[tex]\( K_{a3} = 4.02 \times 10^{-7} \)[/tex]
Concentration of disodium citrate, [tex]\( [ \text{Na}_2\text{C}_6\text{H}_6\text{O}_7 ] = 0.415 \, M \)[/tex]
### Step-by-Step Solution:
1. Identify the Predominant Species:
Disodium citrate (Na[tex]\(_2\)[/tex]C[tex]\(_6\)[/tex]H[tex]\(_6\)[/tex]O[tex]\(_7\)[/tex]) will dissociate in water, primarily forming H[tex]\(_2\)[/tex]C[tex]\(_6\)[/tex]H[tex]\(_5\)[/tex]O[tex]\(_7^-\)[/tex] ions. The most significant [tex]$\text{H}^+$[/tex] ion contribution will come from the first dissociation constant ([tex]\( K_{a1} \)[/tex]).
2. Approximation of Dominant Equilibrium:
For this predominant species H[tex]\(_2\)[/tex]C[tex]\(_6\)[/tex]H[tex]\(_5\)[/tex]O[tex]\(_7^-\)[/tex], we can use the approximation for the dominant equilibrium involving [tex]\( K_{a1} \)[/tex]:
[tex]\[ \text{H}_2\text{C}_6\text{H}_5\text{O}_7^- \leftrightarrow \text{H}^+ + \text{HC}_6\text{H}_5\text{O}_7^{2-} \][/tex]
Using the formula for the concentration of hydrogen ions [tex]\( [\text{H}^+] \)[/tex]:
[tex]\[ [\text{H}^+] = \sqrt{K_{a1} \cdot [\text{Na}_2\text{C}_6\text{H}_6\text{O}_7 ]} \][/tex]
Substituting the given values:
[tex]\[ [\text{H}^+] = \sqrt{7.44 \times 10^{-4} \cdot 0.415} \][/tex]
Computing the result:
[tex]\[ [\text{H}^+] \approx 0.01757 \, M \][/tex]
3. Calculate the pH:
The pH of the solution can be calculated using the formula:
[tex]\[ \text{pH} = -\log_{10}[\text{H}^+] \][/tex]
Substituting the concentration of hydrogen ions:
[tex]\[ \text{pH} = -\log_{10}(0.01757) \][/tex]
Computing the result:
[tex]\[ \text{pH} \approx 1.755 \][/tex]
### Final Results:
- The concentration of disodium citrate: [tex]\(0.415 \, M\)[/tex]
- The concentration of hydrogen ions: [tex]\(0.01757 \, M\)[/tex]
- The pH of the solution: [tex]\(1.755\)[/tex]
Thus, the pH of the 0.415 M solution of disodium citrate is approximately [tex]\(1.755\)[/tex].
We appreciate your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Thank you for choosing IDNLearn.com. We’re committed to providing accurate answers, so visit us again soon.