Get expert insights and reliable answers to your questions on IDNLearn.com. Discover in-depth and trustworthy answers from our extensive network of knowledgeable professionals.
Sagot :
Given the vertices [tex]\(A(11,-7), B(9,-4), C(11,-1)\)[/tex], and [tex]\(D(13,-4)\)[/tex], and comparing them to the provided answers, we proceed as follows:
First, we determine the lengths of the sides of the quadrilateral ABCD.
For [tex]\(AB\)[/tex]:
[tex]\[ AB = \sqrt{(9 - 11)^2 + (-4 - (-7))^2} = \sqrt{(-2)^2 + 3^2} = \sqrt{4 + 9} = \sqrt{13} \approx 3.605551275463989 \][/tex]
For [tex]\(BC\)[/tex]:
[tex]\[ BC = \sqrt{(11 - 9)^2 + (-1 - (-4))^2} = \sqrt{2^2 + 3^2} = \sqrt{4 + 9} = \sqrt{13} \approx 3.605551275463989 \][/tex]
For [tex]\(CD\)[/tex]:
[tex]\[ CD = \sqrt{(13 - 11)^2 + (-4 - (-1))^2} = \sqrt{2^2 + (-3)^2} = \sqrt{4 + 9} = \sqrt{13} \approx 3.605551275463989 \][/tex]
For [tex]\(DA\)[/tex]:
[tex]\[ DA = \sqrt{(13 - 11)^2 + (-4 - (-7))^2} = \sqrt{2^2 + 3^2} = \sqrt{4 + 9} = \sqrt{13} \approx 3.605551275463989 \][/tex]
All sides of quadrilateral [tex]\(ABCD\)[/tex] are equal to [tex]\(\sqrt{13} \approx 3.605551275463989\)[/tex].
Next, we need to determine if this is a parallelogram. For it to be a parallelogram, opposite sides must be equal and parallel.
Additionally, we check the diagonals to see if they're equal:
[tex]\[ AC = \sqrt{(11 - 11)^2 + (-1 - (-7))^2} = \sqrt{0 + 36} = 6 \][/tex]
[tex]\[ BD = \sqrt{(13 - 9)^2 + (-4 - (-4))^2} = \sqrt{4^2 + 0} = 4 \][/tex]
Since AC and BD do not equal, ABCD is not a parallelogram; however, as all sides are equal and its diagonals do not bisect each other equally, it is a rhombus.
Next, we consider [tex]\(C^{\prime}(11, 1)\)[/tex] instead of [tex]\(C\)[/tex]. We compute the distances:
For [tex]\(B C'\)[/tex]:
[tex]\[ BC' = \sqrt{(11 - 9)^2 + (1 - (-4))^2} = \sqrt{2^2 + 5^2} = \sqrt{4 + 25} = \sqrt{29} \approx 5.385164807134504 \][/tex]
For [tex]\(C' D\)[/tex]:
[tex]\[ C'D = \sqrt{(11 - 13)^2 + (1 - (-4))^2} = \sqrt{(-2)^2 + 5^2} = \sqrt{4 + 25} = \sqrt{29} \approx 5.385164807134504 \][/tex]
For [tex]\(DA\)[/tex]:
[tex]\[ DA = \sqrt{(13 - 11)^2 + (-4 - (-7))^2} = \sqrt{2^2 + 3^2} = \sqrt{13} \approx 3.605551275463989 \][/tex]
Given the difference in side lengths [tex]\( \sqrt{13}\)[/tex] and [tex]\( \approx \sqrt{29}\)[/tex], [tex]\(AB' C' D\)[/tex] cannot be a parallelogram or a rhombus. Hence, it’s a general quadrilateral, not fitting any special categories of quadrilaterals listed here.
Therefore:
Quadrilateral [tex]\(ABCD\)[/tex] is a rhombus. Quadrilateral [tex]\(AB'C'D\)[/tex] would be a quadrilateral.
Final Answer:
Quadrilateral [tex]\(ABCD\)[/tex] is a [tex]\(\boxed{\text{Rhombus}}\)[/tex] and [tex]\(AB'C'D\)[/tex] would be a [tex]\(\boxed{\text{Quadrilateral}}\)[/tex].
First, we determine the lengths of the sides of the quadrilateral ABCD.
For [tex]\(AB\)[/tex]:
[tex]\[ AB = \sqrt{(9 - 11)^2 + (-4 - (-7))^2} = \sqrt{(-2)^2 + 3^2} = \sqrt{4 + 9} = \sqrt{13} \approx 3.605551275463989 \][/tex]
For [tex]\(BC\)[/tex]:
[tex]\[ BC = \sqrt{(11 - 9)^2 + (-1 - (-4))^2} = \sqrt{2^2 + 3^2} = \sqrt{4 + 9} = \sqrt{13} \approx 3.605551275463989 \][/tex]
For [tex]\(CD\)[/tex]:
[tex]\[ CD = \sqrt{(13 - 11)^2 + (-4 - (-1))^2} = \sqrt{2^2 + (-3)^2} = \sqrt{4 + 9} = \sqrt{13} \approx 3.605551275463989 \][/tex]
For [tex]\(DA\)[/tex]:
[tex]\[ DA = \sqrt{(13 - 11)^2 + (-4 - (-7))^2} = \sqrt{2^2 + 3^2} = \sqrt{4 + 9} = \sqrt{13} \approx 3.605551275463989 \][/tex]
All sides of quadrilateral [tex]\(ABCD\)[/tex] are equal to [tex]\(\sqrt{13} \approx 3.605551275463989\)[/tex].
Next, we need to determine if this is a parallelogram. For it to be a parallelogram, opposite sides must be equal and parallel.
Additionally, we check the diagonals to see if they're equal:
[tex]\[ AC = \sqrt{(11 - 11)^2 + (-1 - (-7))^2} = \sqrt{0 + 36} = 6 \][/tex]
[tex]\[ BD = \sqrt{(13 - 9)^2 + (-4 - (-4))^2} = \sqrt{4^2 + 0} = 4 \][/tex]
Since AC and BD do not equal, ABCD is not a parallelogram; however, as all sides are equal and its diagonals do not bisect each other equally, it is a rhombus.
Next, we consider [tex]\(C^{\prime}(11, 1)\)[/tex] instead of [tex]\(C\)[/tex]. We compute the distances:
For [tex]\(B C'\)[/tex]:
[tex]\[ BC' = \sqrt{(11 - 9)^2 + (1 - (-4))^2} = \sqrt{2^2 + 5^2} = \sqrt{4 + 25} = \sqrt{29} \approx 5.385164807134504 \][/tex]
For [tex]\(C' D\)[/tex]:
[tex]\[ C'D = \sqrt{(11 - 13)^2 + (1 - (-4))^2} = \sqrt{(-2)^2 + 5^2} = \sqrt{4 + 25} = \sqrt{29} \approx 5.385164807134504 \][/tex]
For [tex]\(DA\)[/tex]:
[tex]\[ DA = \sqrt{(13 - 11)^2 + (-4 - (-7))^2} = \sqrt{2^2 + 3^2} = \sqrt{13} \approx 3.605551275463989 \][/tex]
Given the difference in side lengths [tex]\( \sqrt{13}\)[/tex] and [tex]\( \approx \sqrt{29}\)[/tex], [tex]\(AB' C' D\)[/tex] cannot be a parallelogram or a rhombus. Hence, it’s a general quadrilateral, not fitting any special categories of quadrilaterals listed here.
Therefore:
Quadrilateral [tex]\(ABCD\)[/tex] is a rhombus. Quadrilateral [tex]\(AB'C'D\)[/tex] would be a quadrilateral.
Final Answer:
Quadrilateral [tex]\(ABCD\)[/tex] is a [tex]\(\boxed{\text{Rhombus}}\)[/tex] and [tex]\(AB'C'D\)[/tex] would be a [tex]\(\boxed{\text{Quadrilateral}}\)[/tex].
Thank you for using this platform to share and learn. Don't hesitate to keep asking and answering. We value every contribution you make. For trustworthy answers, rely on IDNLearn.com. Thanks for visiting, and we look forward to assisting you again.