IDNLearn.com connects you with a community of experts ready to answer your questions. Our Q&A platform offers detailed and trustworthy answers to ensure you have the information you need.
Sagot :
Certainly! Let's evaluate each integral step-by-step:
(a) [tex]\(\int \cos^3 \theta \, d\theta\)[/tex]
To integrate [tex]\(\cos^3 \theta\)[/tex], we can use a method known as reduction formulas or trigonometric identities.
First, we use the trigonometric identity for the cosine function:
[tex]\[ \cos^3 \theta = \cos \theta \cdot \cos^2 \theta = \cos \theta \cdot (1 - \sin^2 \theta) \][/tex]
Thus, rewriting the integral:
[tex]\[ \int \cos^3 \theta \, d\theta = \int \cos \theta \cdot (1 - \sin^2 \theta) \, d\theta \][/tex]
Now, let [tex]\(u = \sin \theta\)[/tex]. Then, [tex]\(du = \cos \theta \, d\theta\)[/tex], and the integral becomes:
[tex]\[ \int \cos \theta \cdot (1 - \sin^2 \theta) \, d\theta = \int (1 - u^2) \, du \][/tex]
Integrate each term separately:
[tex]\[ \int 1 \, du - \int u^2 \, du = u - \frac{u^3}{3} + C \][/tex]
Substituting back [tex]\(u = \sin \theta\)[/tex]:
[tex]\[ \sin \theta - \frac{\sin^3 \theta}{3} + C \][/tex]
So, the antiderivative is:
[tex]\[ -\frac{\sin^3 \theta}{3} + \sin \theta + C \][/tex]
(b) [tex]\(\int \frac{\ln \left(x^2\right)}{x^2} \, dx\)[/tex]
We start by simplifying the integrand. Recall that:
[tex]\[ \ln(x^2) = 2 \ln(x) \][/tex]
Thus, the integral becomes:
[tex]\[ \int \frac{2 \ln(x)}{x^2} \, dx \][/tex]
Rewrite the integral by taking the constant out:
[tex]\[ 2 \int \frac{\ln(x)}{x^2} \, dx \][/tex]
Now, use integration by parts. Let:
[tex]\[ u = \ln(x) \quad \text{and} \quad dv = \frac{1}{x^2} \, dx \][/tex]
Then, [tex]\(du = \frac{1}{x} \, dx\)[/tex] and integrating [tex]\(dv\)[/tex] gives us [tex]\(v = -\frac{1}{x}\)[/tex].
Using the integration by parts formula, [tex]\(\int u \, dv = uv - \int v \, du\)[/tex], we get:
[tex]\[ 2 \left[ \ln(x) \left(-\frac{1}{x}\right) - \int \left(-\frac{1}{x}\right) \left(\frac{1}{x}\right) \, dx \right] \][/tex]
Simplify and solve the remaining integral:
[tex]\[ 2 \left[ -\frac{\ln(x)}{x} + \int \frac{1}{x^2} \, dx \right] \][/tex]
The remaining integral is straightforward:
[tex]\[ \int \frac{1}{x^2} \, dx = -\frac{1}{x} \][/tex]
Putting it all together:
[tex]\[ 2 \left( -\frac{\ln(x)}{x} - \frac{1}{x} \right) = -\frac{2 \ln(x)}{x} - \frac{2}{x} + C' \][/tex]
Thus, the antiderivative is:
[tex]\[ -\frac{\ln(x^2)}{x} - \frac{2}{x} + C \][/tex]
Putting it all together:
[tex]\[ -\frac{\log(x^2)}{x} - \frac{2}{x} + C \][/tex]
Hence, based on the simplifications and results:
The integral results are:
[tex]\[ (a) \, \int \cos^3 \theta \, d\theta = -\frac{\sin^3 \theta}{3} + \sin \theta + C \][/tex]
[tex]\[ (b) \, \int \frac{\ln \left(x^2\right)}{x^2} \, dx = -\frac{\log(x^2)}{x} - \frac{2}{x} + C \][/tex]
(a) [tex]\(\int \cos^3 \theta \, d\theta\)[/tex]
To integrate [tex]\(\cos^3 \theta\)[/tex], we can use a method known as reduction formulas or trigonometric identities.
First, we use the trigonometric identity for the cosine function:
[tex]\[ \cos^3 \theta = \cos \theta \cdot \cos^2 \theta = \cos \theta \cdot (1 - \sin^2 \theta) \][/tex]
Thus, rewriting the integral:
[tex]\[ \int \cos^3 \theta \, d\theta = \int \cos \theta \cdot (1 - \sin^2 \theta) \, d\theta \][/tex]
Now, let [tex]\(u = \sin \theta\)[/tex]. Then, [tex]\(du = \cos \theta \, d\theta\)[/tex], and the integral becomes:
[tex]\[ \int \cos \theta \cdot (1 - \sin^2 \theta) \, d\theta = \int (1 - u^2) \, du \][/tex]
Integrate each term separately:
[tex]\[ \int 1 \, du - \int u^2 \, du = u - \frac{u^3}{3} + C \][/tex]
Substituting back [tex]\(u = \sin \theta\)[/tex]:
[tex]\[ \sin \theta - \frac{\sin^3 \theta}{3} + C \][/tex]
So, the antiderivative is:
[tex]\[ -\frac{\sin^3 \theta}{3} + \sin \theta + C \][/tex]
(b) [tex]\(\int \frac{\ln \left(x^2\right)}{x^2} \, dx\)[/tex]
We start by simplifying the integrand. Recall that:
[tex]\[ \ln(x^2) = 2 \ln(x) \][/tex]
Thus, the integral becomes:
[tex]\[ \int \frac{2 \ln(x)}{x^2} \, dx \][/tex]
Rewrite the integral by taking the constant out:
[tex]\[ 2 \int \frac{\ln(x)}{x^2} \, dx \][/tex]
Now, use integration by parts. Let:
[tex]\[ u = \ln(x) \quad \text{and} \quad dv = \frac{1}{x^2} \, dx \][/tex]
Then, [tex]\(du = \frac{1}{x} \, dx\)[/tex] and integrating [tex]\(dv\)[/tex] gives us [tex]\(v = -\frac{1}{x}\)[/tex].
Using the integration by parts formula, [tex]\(\int u \, dv = uv - \int v \, du\)[/tex], we get:
[tex]\[ 2 \left[ \ln(x) \left(-\frac{1}{x}\right) - \int \left(-\frac{1}{x}\right) \left(\frac{1}{x}\right) \, dx \right] \][/tex]
Simplify and solve the remaining integral:
[tex]\[ 2 \left[ -\frac{\ln(x)}{x} + \int \frac{1}{x^2} \, dx \right] \][/tex]
The remaining integral is straightforward:
[tex]\[ \int \frac{1}{x^2} \, dx = -\frac{1}{x} \][/tex]
Putting it all together:
[tex]\[ 2 \left( -\frac{\ln(x)}{x} - \frac{1}{x} \right) = -\frac{2 \ln(x)}{x} - \frac{2}{x} + C' \][/tex]
Thus, the antiderivative is:
[tex]\[ -\frac{\ln(x^2)}{x} - \frac{2}{x} + C \][/tex]
Putting it all together:
[tex]\[ -\frac{\log(x^2)}{x} - \frac{2}{x} + C \][/tex]
Hence, based on the simplifications and results:
The integral results are:
[tex]\[ (a) \, \int \cos^3 \theta \, d\theta = -\frac{\sin^3 \theta}{3} + \sin \theta + C \][/tex]
[tex]\[ (b) \, \int \frac{\ln \left(x^2\right)}{x^2} \, dx = -\frac{\log(x^2)}{x} - \frac{2}{x} + C \][/tex]
Thank you for contributing to our discussion. Don't forget to check back for new answers. Keep asking, answering, and sharing useful information. Your questions deserve precise answers. Thank you for visiting IDNLearn.com, and see you again soon for more helpful information.