IDNLearn.com is your go-to platform for finding reliable answers quickly. Get step-by-step guidance for all your technical questions from our knowledgeable community members.
Sagot :
Certainly! Let's evaluate each integral step-by-step:
(a) [tex]\(\int \cos^3 \theta \, d\theta\)[/tex]
To integrate [tex]\(\cos^3 \theta\)[/tex], we can use a method known as reduction formulas or trigonometric identities.
First, we use the trigonometric identity for the cosine function:
[tex]\[ \cos^3 \theta = \cos \theta \cdot \cos^2 \theta = \cos \theta \cdot (1 - \sin^2 \theta) \][/tex]
Thus, rewriting the integral:
[tex]\[ \int \cos^3 \theta \, d\theta = \int \cos \theta \cdot (1 - \sin^2 \theta) \, d\theta \][/tex]
Now, let [tex]\(u = \sin \theta\)[/tex]. Then, [tex]\(du = \cos \theta \, d\theta\)[/tex], and the integral becomes:
[tex]\[ \int \cos \theta \cdot (1 - \sin^2 \theta) \, d\theta = \int (1 - u^2) \, du \][/tex]
Integrate each term separately:
[tex]\[ \int 1 \, du - \int u^2 \, du = u - \frac{u^3}{3} + C \][/tex]
Substituting back [tex]\(u = \sin \theta\)[/tex]:
[tex]\[ \sin \theta - \frac{\sin^3 \theta}{3} + C \][/tex]
So, the antiderivative is:
[tex]\[ -\frac{\sin^3 \theta}{3} + \sin \theta + C \][/tex]
(b) [tex]\(\int \frac{\ln \left(x^2\right)}{x^2} \, dx\)[/tex]
We start by simplifying the integrand. Recall that:
[tex]\[ \ln(x^2) = 2 \ln(x) \][/tex]
Thus, the integral becomes:
[tex]\[ \int \frac{2 \ln(x)}{x^2} \, dx \][/tex]
Rewrite the integral by taking the constant out:
[tex]\[ 2 \int \frac{\ln(x)}{x^2} \, dx \][/tex]
Now, use integration by parts. Let:
[tex]\[ u = \ln(x) \quad \text{and} \quad dv = \frac{1}{x^2} \, dx \][/tex]
Then, [tex]\(du = \frac{1}{x} \, dx\)[/tex] and integrating [tex]\(dv\)[/tex] gives us [tex]\(v = -\frac{1}{x}\)[/tex].
Using the integration by parts formula, [tex]\(\int u \, dv = uv - \int v \, du\)[/tex], we get:
[tex]\[ 2 \left[ \ln(x) \left(-\frac{1}{x}\right) - \int \left(-\frac{1}{x}\right) \left(\frac{1}{x}\right) \, dx \right] \][/tex]
Simplify and solve the remaining integral:
[tex]\[ 2 \left[ -\frac{\ln(x)}{x} + \int \frac{1}{x^2} \, dx \right] \][/tex]
The remaining integral is straightforward:
[tex]\[ \int \frac{1}{x^2} \, dx = -\frac{1}{x} \][/tex]
Putting it all together:
[tex]\[ 2 \left( -\frac{\ln(x)}{x} - \frac{1}{x} \right) = -\frac{2 \ln(x)}{x} - \frac{2}{x} + C' \][/tex]
Thus, the antiderivative is:
[tex]\[ -\frac{\ln(x^2)}{x} - \frac{2}{x} + C \][/tex]
Putting it all together:
[tex]\[ -\frac{\log(x^2)}{x} - \frac{2}{x} + C \][/tex]
Hence, based on the simplifications and results:
The integral results are:
[tex]\[ (a) \, \int \cos^3 \theta \, d\theta = -\frac{\sin^3 \theta}{3} + \sin \theta + C \][/tex]
[tex]\[ (b) \, \int \frac{\ln \left(x^2\right)}{x^2} \, dx = -\frac{\log(x^2)}{x} - \frac{2}{x} + C \][/tex]
(a) [tex]\(\int \cos^3 \theta \, d\theta\)[/tex]
To integrate [tex]\(\cos^3 \theta\)[/tex], we can use a method known as reduction formulas or trigonometric identities.
First, we use the trigonometric identity for the cosine function:
[tex]\[ \cos^3 \theta = \cos \theta \cdot \cos^2 \theta = \cos \theta \cdot (1 - \sin^2 \theta) \][/tex]
Thus, rewriting the integral:
[tex]\[ \int \cos^3 \theta \, d\theta = \int \cos \theta \cdot (1 - \sin^2 \theta) \, d\theta \][/tex]
Now, let [tex]\(u = \sin \theta\)[/tex]. Then, [tex]\(du = \cos \theta \, d\theta\)[/tex], and the integral becomes:
[tex]\[ \int \cos \theta \cdot (1 - \sin^2 \theta) \, d\theta = \int (1 - u^2) \, du \][/tex]
Integrate each term separately:
[tex]\[ \int 1 \, du - \int u^2 \, du = u - \frac{u^3}{3} + C \][/tex]
Substituting back [tex]\(u = \sin \theta\)[/tex]:
[tex]\[ \sin \theta - \frac{\sin^3 \theta}{3} + C \][/tex]
So, the antiderivative is:
[tex]\[ -\frac{\sin^3 \theta}{3} + \sin \theta + C \][/tex]
(b) [tex]\(\int \frac{\ln \left(x^2\right)}{x^2} \, dx\)[/tex]
We start by simplifying the integrand. Recall that:
[tex]\[ \ln(x^2) = 2 \ln(x) \][/tex]
Thus, the integral becomes:
[tex]\[ \int \frac{2 \ln(x)}{x^2} \, dx \][/tex]
Rewrite the integral by taking the constant out:
[tex]\[ 2 \int \frac{\ln(x)}{x^2} \, dx \][/tex]
Now, use integration by parts. Let:
[tex]\[ u = \ln(x) \quad \text{and} \quad dv = \frac{1}{x^2} \, dx \][/tex]
Then, [tex]\(du = \frac{1}{x} \, dx\)[/tex] and integrating [tex]\(dv\)[/tex] gives us [tex]\(v = -\frac{1}{x}\)[/tex].
Using the integration by parts formula, [tex]\(\int u \, dv = uv - \int v \, du\)[/tex], we get:
[tex]\[ 2 \left[ \ln(x) \left(-\frac{1}{x}\right) - \int \left(-\frac{1}{x}\right) \left(\frac{1}{x}\right) \, dx \right] \][/tex]
Simplify and solve the remaining integral:
[tex]\[ 2 \left[ -\frac{\ln(x)}{x} + \int \frac{1}{x^2} \, dx \right] \][/tex]
The remaining integral is straightforward:
[tex]\[ \int \frac{1}{x^2} \, dx = -\frac{1}{x} \][/tex]
Putting it all together:
[tex]\[ 2 \left( -\frac{\ln(x)}{x} - \frac{1}{x} \right) = -\frac{2 \ln(x)}{x} - \frac{2}{x} + C' \][/tex]
Thus, the antiderivative is:
[tex]\[ -\frac{\ln(x^2)}{x} - \frac{2}{x} + C \][/tex]
Putting it all together:
[tex]\[ -\frac{\log(x^2)}{x} - \frac{2}{x} + C \][/tex]
Hence, based on the simplifications and results:
The integral results are:
[tex]\[ (a) \, \int \cos^3 \theta \, d\theta = -\frac{\sin^3 \theta}{3} + \sin \theta + C \][/tex]
[tex]\[ (b) \, \int \frac{\ln \left(x^2\right)}{x^2} \, dx = -\frac{\log(x^2)}{x} - \frac{2}{x} + C \][/tex]
Thank you for joining our conversation. Don't hesitate to return anytime to find answers to your questions. Let's continue sharing knowledge and experiences! Find clear answers at IDNLearn.com. Thanks for stopping by, and come back for more reliable solutions.