IDNLearn.com is your go-to resource for finding precise and accurate answers. Our Q&A platform offers reliable and thorough answers to help you make informed decisions quickly and easily.
Sagot :
To solve for [tex]\( f^{\prime \prime \prime}(\pi) \)[/tex] given the function [tex]\( f(x) = 2 \sin x \cos x + \frac{1}{3} x^3 - x^2 \)[/tex], let's go through the differentiation process step-by-step.
Given:
[tex]\[ f(x) = 2 \sin x \cos x + \frac{1}{3} x^3 - x^2 \][/tex]
1. First Step: Simplify the Trigonometric Part
Using the double angle identity, [tex]\(2 \sin x \cos x = \sin(2x)\)[/tex], the function can be rewritten:
[tex]\[ f(x) = \sin(2x) + \frac{1}{3} x^3 - x^2 \][/tex]
2. First Derivative [tex]\( f'(x) \)[/tex]
Compute the first derivative:
[tex]\[ f'(x) = \frac{d}{dx}(\sin(2x)) + \frac{d}{dx}\left(\frac{1}{3} x^3\right) - \frac{d}{dx}(x^2) \][/tex]
Using the chain rule and basic differentiation rules:
[tex]\[ \frac{d}{dx}(\sin(2x)) = 2 \cos(2x) \][/tex]
[tex]\[ \frac{d}{dx}\left(\frac{1}{3} x^3\right) = x^2 \][/tex]
[tex]\[ \frac{d}{dx}(x^2) = 2x \][/tex]
So:
[tex]\[ f'(x) = 2 \cos(2x) + x^2 - 2x \][/tex]
3. Second Derivative [tex]\( f''(x) \)[/tex]
Compute the second derivative:
[tex]\[ f''(x) = \frac{d}{dx}(2 \cos(2x) + x^2 - 2x) \][/tex]
Using the chain rule and basic differentiation rules:
[tex]\[ \frac{d}{dx}(2 \cos(2x)) = -4 \sin(2x) \][/tex]
[tex]\[ \frac{d}{dx}(x^2) = 2x \][/tex]
[tex]\[ \frac{d}{dx}(-2x) = -2 \][/tex]
So:
[tex]\[ f''(x) = -4 \sin(2x) + 2x - 2 \][/tex]
4. Third Derivative [tex]\( f'''(x) \)[/tex]
Compute the third derivative:
[tex]\[ f'''(x) = \frac{d}{dx}(-4 \sin(2x) + 2x - 2) \][/tex]
Using the chain rule and basic differentiation rules:
[tex]\[ \frac{d}{dx}(-4 \sin(2x)) = -8 \cos(2x) \][/tex]
[tex]\[ \frac{d}{dx}(2x) = 2 \][/tex]
[tex]\[ \frac{d}{dx}(-2) = 0 \][/tex]
So:
[tex]\[ f'''(x) = -8 \cos(2x) + 2 \][/tex]
5. Evaluate at [tex]\( x = \pi \)[/tex]
Substitute [tex]\( x = \pi \)[/tex] into the third derivative:
[tex]\[ f'''(\pi) = -8 \cos(2\pi) + 2 \][/tex]
Recall that [tex]\( \cos(2\pi) = 1 \)[/tex]:
[tex]\[ f'''(\pi) = -8 \times 1 + 2 = -8 + 2 = -6 \][/tex]
So:
[tex]\[ f'''(\pi) = -6 \][/tex]
Hence, the correct value is:
[tex]\[ \boxed{-6} \][/tex]
Given:
[tex]\[ f(x) = 2 \sin x \cos x + \frac{1}{3} x^3 - x^2 \][/tex]
1. First Step: Simplify the Trigonometric Part
Using the double angle identity, [tex]\(2 \sin x \cos x = \sin(2x)\)[/tex], the function can be rewritten:
[tex]\[ f(x) = \sin(2x) + \frac{1}{3} x^3 - x^2 \][/tex]
2. First Derivative [tex]\( f'(x) \)[/tex]
Compute the first derivative:
[tex]\[ f'(x) = \frac{d}{dx}(\sin(2x)) + \frac{d}{dx}\left(\frac{1}{3} x^3\right) - \frac{d}{dx}(x^2) \][/tex]
Using the chain rule and basic differentiation rules:
[tex]\[ \frac{d}{dx}(\sin(2x)) = 2 \cos(2x) \][/tex]
[tex]\[ \frac{d}{dx}\left(\frac{1}{3} x^3\right) = x^2 \][/tex]
[tex]\[ \frac{d}{dx}(x^2) = 2x \][/tex]
So:
[tex]\[ f'(x) = 2 \cos(2x) + x^2 - 2x \][/tex]
3. Second Derivative [tex]\( f''(x) \)[/tex]
Compute the second derivative:
[tex]\[ f''(x) = \frac{d}{dx}(2 \cos(2x) + x^2 - 2x) \][/tex]
Using the chain rule and basic differentiation rules:
[tex]\[ \frac{d}{dx}(2 \cos(2x)) = -4 \sin(2x) \][/tex]
[tex]\[ \frac{d}{dx}(x^2) = 2x \][/tex]
[tex]\[ \frac{d}{dx}(-2x) = -2 \][/tex]
So:
[tex]\[ f''(x) = -4 \sin(2x) + 2x - 2 \][/tex]
4. Third Derivative [tex]\( f'''(x) \)[/tex]
Compute the third derivative:
[tex]\[ f'''(x) = \frac{d}{dx}(-4 \sin(2x) + 2x - 2) \][/tex]
Using the chain rule and basic differentiation rules:
[tex]\[ \frac{d}{dx}(-4 \sin(2x)) = -8 \cos(2x) \][/tex]
[tex]\[ \frac{d}{dx}(2x) = 2 \][/tex]
[tex]\[ \frac{d}{dx}(-2) = 0 \][/tex]
So:
[tex]\[ f'''(x) = -8 \cos(2x) + 2 \][/tex]
5. Evaluate at [tex]\( x = \pi \)[/tex]
Substitute [tex]\( x = \pi \)[/tex] into the third derivative:
[tex]\[ f'''(\pi) = -8 \cos(2\pi) + 2 \][/tex]
Recall that [tex]\( \cos(2\pi) = 1 \)[/tex]:
[tex]\[ f'''(\pi) = -8 \times 1 + 2 = -8 + 2 = -6 \][/tex]
So:
[tex]\[ f'''(\pi) = -6 \][/tex]
Hence, the correct value is:
[tex]\[ \boxed{-6} \][/tex]
Thank you for being part of this discussion. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Find clear answers at IDNLearn.com. Thanks for stopping by, and come back for more reliable solutions.