IDNLearn.com: Your trusted source for finding accurate and reliable answers. Ask anything and receive comprehensive, well-informed responses from our dedicated team of experts.
Sagot :
To solve for [tex]\( f^{\prime \prime \prime}(\pi) \)[/tex] given the function [tex]\( f(x) = 2 \sin x \cos x + \frac{1}{3} x^3 - x^2 \)[/tex], let's go through the differentiation process step-by-step.
Given:
[tex]\[ f(x) = 2 \sin x \cos x + \frac{1}{3} x^3 - x^2 \][/tex]
1. First Step: Simplify the Trigonometric Part
Using the double angle identity, [tex]\(2 \sin x \cos x = \sin(2x)\)[/tex], the function can be rewritten:
[tex]\[ f(x) = \sin(2x) + \frac{1}{3} x^3 - x^2 \][/tex]
2. First Derivative [tex]\( f'(x) \)[/tex]
Compute the first derivative:
[tex]\[ f'(x) = \frac{d}{dx}(\sin(2x)) + \frac{d}{dx}\left(\frac{1}{3} x^3\right) - \frac{d}{dx}(x^2) \][/tex]
Using the chain rule and basic differentiation rules:
[tex]\[ \frac{d}{dx}(\sin(2x)) = 2 \cos(2x) \][/tex]
[tex]\[ \frac{d}{dx}\left(\frac{1}{3} x^3\right) = x^2 \][/tex]
[tex]\[ \frac{d}{dx}(x^2) = 2x \][/tex]
So:
[tex]\[ f'(x) = 2 \cos(2x) + x^2 - 2x \][/tex]
3. Second Derivative [tex]\( f''(x) \)[/tex]
Compute the second derivative:
[tex]\[ f''(x) = \frac{d}{dx}(2 \cos(2x) + x^2 - 2x) \][/tex]
Using the chain rule and basic differentiation rules:
[tex]\[ \frac{d}{dx}(2 \cos(2x)) = -4 \sin(2x) \][/tex]
[tex]\[ \frac{d}{dx}(x^2) = 2x \][/tex]
[tex]\[ \frac{d}{dx}(-2x) = -2 \][/tex]
So:
[tex]\[ f''(x) = -4 \sin(2x) + 2x - 2 \][/tex]
4. Third Derivative [tex]\( f'''(x) \)[/tex]
Compute the third derivative:
[tex]\[ f'''(x) = \frac{d}{dx}(-4 \sin(2x) + 2x - 2) \][/tex]
Using the chain rule and basic differentiation rules:
[tex]\[ \frac{d}{dx}(-4 \sin(2x)) = -8 \cos(2x) \][/tex]
[tex]\[ \frac{d}{dx}(2x) = 2 \][/tex]
[tex]\[ \frac{d}{dx}(-2) = 0 \][/tex]
So:
[tex]\[ f'''(x) = -8 \cos(2x) + 2 \][/tex]
5. Evaluate at [tex]\( x = \pi \)[/tex]
Substitute [tex]\( x = \pi \)[/tex] into the third derivative:
[tex]\[ f'''(\pi) = -8 \cos(2\pi) + 2 \][/tex]
Recall that [tex]\( \cos(2\pi) = 1 \)[/tex]:
[tex]\[ f'''(\pi) = -8 \times 1 + 2 = -8 + 2 = -6 \][/tex]
So:
[tex]\[ f'''(\pi) = -6 \][/tex]
Hence, the correct value is:
[tex]\[ \boxed{-6} \][/tex]
Given:
[tex]\[ f(x) = 2 \sin x \cos x + \frac{1}{3} x^3 - x^2 \][/tex]
1. First Step: Simplify the Trigonometric Part
Using the double angle identity, [tex]\(2 \sin x \cos x = \sin(2x)\)[/tex], the function can be rewritten:
[tex]\[ f(x) = \sin(2x) + \frac{1}{3} x^3 - x^2 \][/tex]
2. First Derivative [tex]\( f'(x) \)[/tex]
Compute the first derivative:
[tex]\[ f'(x) = \frac{d}{dx}(\sin(2x)) + \frac{d}{dx}\left(\frac{1}{3} x^3\right) - \frac{d}{dx}(x^2) \][/tex]
Using the chain rule and basic differentiation rules:
[tex]\[ \frac{d}{dx}(\sin(2x)) = 2 \cos(2x) \][/tex]
[tex]\[ \frac{d}{dx}\left(\frac{1}{3} x^3\right) = x^2 \][/tex]
[tex]\[ \frac{d}{dx}(x^2) = 2x \][/tex]
So:
[tex]\[ f'(x) = 2 \cos(2x) + x^2 - 2x \][/tex]
3. Second Derivative [tex]\( f''(x) \)[/tex]
Compute the second derivative:
[tex]\[ f''(x) = \frac{d}{dx}(2 \cos(2x) + x^2 - 2x) \][/tex]
Using the chain rule and basic differentiation rules:
[tex]\[ \frac{d}{dx}(2 \cos(2x)) = -4 \sin(2x) \][/tex]
[tex]\[ \frac{d}{dx}(x^2) = 2x \][/tex]
[tex]\[ \frac{d}{dx}(-2x) = -2 \][/tex]
So:
[tex]\[ f''(x) = -4 \sin(2x) + 2x - 2 \][/tex]
4. Third Derivative [tex]\( f'''(x) \)[/tex]
Compute the third derivative:
[tex]\[ f'''(x) = \frac{d}{dx}(-4 \sin(2x) + 2x - 2) \][/tex]
Using the chain rule and basic differentiation rules:
[tex]\[ \frac{d}{dx}(-4 \sin(2x)) = -8 \cos(2x) \][/tex]
[tex]\[ \frac{d}{dx}(2x) = 2 \][/tex]
[tex]\[ \frac{d}{dx}(-2) = 0 \][/tex]
So:
[tex]\[ f'''(x) = -8 \cos(2x) + 2 \][/tex]
5. Evaluate at [tex]\( x = \pi \)[/tex]
Substitute [tex]\( x = \pi \)[/tex] into the third derivative:
[tex]\[ f'''(\pi) = -8 \cos(2\pi) + 2 \][/tex]
Recall that [tex]\( \cos(2\pi) = 1 \)[/tex]:
[tex]\[ f'''(\pi) = -8 \times 1 + 2 = -8 + 2 = -6 \][/tex]
So:
[tex]\[ f'''(\pi) = -6 \][/tex]
Hence, the correct value is:
[tex]\[ \boxed{-6} \][/tex]
We greatly appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. Your questions find answers at IDNLearn.com. Thanks for visiting, and come back for more accurate and reliable solutions.