Whether you're a student or a professional, IDNLearn.com has answers for everyone. Discover thorough and trustworthy answers from our community of knowledgeable professionals, tailored to meet your specific needs.
Sagot :
Sure, let's solve the quadratic equation [tex]\(4x^2 + 45x + 24 = 0\)[/tex] step-by-step using the quadratic formula. The quadratic formula is:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
where [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] are the coefficients of the equation [tex]\(ax^2 + bx + c = 0\)[/tex].
Given:
- [tex]\(a = 4\)[/tex]
- [tex]\(b = 45\)[/tex]
- [tex]\(c = 24\)[/tex]
First, we calculate the discriminant ([tex]\(\Delta\)[/tex]):
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Substituting the values, we get:
[tex]\[ \Delta = 45^2 - 4 \cdot 4 \cdot 24 \][/tex]
[tex]\[ \Delta = 2025 - 384 \][/tex]
[tex]\[ \Delta = 1641 \][/tex]
Now, we use the quadratic formula to find the solutions:
[tex]\[ x = \frac{-b \pm \sqrt{\Delta}}{2a} \][/tex]
First solution already given:
[tex]\[ x_1 = -10.69 \][/tex]
To find the other solution ([tex]\(x_2\)[/tex]), we proceed as follows:
[tex]\[ x_2 = \frac{-b - \sqrt{\Delta}}{2a} \][/tex]
Substituting the values, we get:
[tex]\[ x_2 = \frac{-45 - \sqrt{1641}}{2 \cdot 4} \][/tex]
[tex]\[ x_2 = \frac{-45 - \sqrt{1641}}{8} \][/tex]
Calculating further gives:
[tex]\[ x_2 \approx \frac{-45 - 40.5}{8} \][/tex]
[tex]\[ x_2 \approx \frac{-85.5}{8} \][/tex]
[tex]\[ x_2 \approx -10.688 \][/tex]
Since this is very close to the already provided value of [tex]\(x_1\)[/tex], we use the positive root for verification:
[tex]\[ x_2 = \frac{-b + \sqrt{\Delta}}{2a} \][/tex]
Substituting the values, we get:
[tex]\[ x_2 = \frac{-45 + \sqrt{1641}}{8} \][/tex]
[tex]\[ x_2 \approx \frac{-45 + 40.5}{8} \][/tex]
[tex]\[ x_2 \approx \frac{-4.5}{8} \][/tex]
[tex]\[ x_2 \approx -0.5625 \][/tex]
Rounding to the hundredths place:
[tex]\[ x_2 \approx -0.56 \][/tex]
Thus, the other solution is [tex]\(-0.56\)[/tex].
Hence, the correct answer is:
[tex]\[ \boxed{-0.56} \][/tex]
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
where [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] are the coefficients of the equation [tex]\(ax^2 + bx + c = 0\)[/tex].
Given:
- [tex]\(a = 4\)[/tex]
- [tex]\(b = 45\)[/tex]
- [tex]\(c = 24\)[/tex]
First, we calculate the discriminant ([tex]\(\Delta\)[/tex]):
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Substituting the values, we get:
[tex]\[ \Delta = 45^2 - 4 \cdot 4 \cdot 24 \][/tex]
[tex]\[ \Delta = 2025 - 384 \][/tex]
[tex]\[ \Delta = 1641 \][/tex]
Now, we use the quadratic formula to find the solutions:
[tex]\[ x = \frac{-b \pm \sqrt{\Delta}}{2a} \][/tex]
First solution already given:
[tex]\[ x_1 = -10.69 \][/tex]
To find the other solution ([tex]\(x_2\)[/tex]), we proceed as follows:
[tex]\[ x_2 = \frac{-b - \sqrt{\Delta}}{2a} \][/tex]
Substituting the values, we get:
[tex]\[ x_2 = \frac{-45 - \sqrt{1641}}{2 \cdot 4} \][/tex]
[tex]\[ x_2 = \frac{-45 - \sqrt{1641}}{8} \][/tex]
Calculating further gives:
[tex]\[ x_2 \approx \frac{-45 - 40.5}{8} \][/tex]
[tex]\[ x_2 \approx \frac{-85.5}{8} \][/tex]
[tex]\[ x_2 \approx -10.688 \][/tex]
Since this is very close to the already provided value of [tex]\(x_1\)[/tex], we use the positive root for verification:
[tex]\[ x_2 = \frac{-b + \sqrt{\Delta}}{2a} \][/tex]
Substituting the values, we get:
[tex]\[ x_2 = \frac{-45 + \sqrt{1641}}{8} \][/tex]
[tex]\[ x_2 \approx \frac{-45 + 40.5}{8} \][/tex]
[tex]\[ x_2 \approx \frac{-4.5}{8} \][/tex]
[tex]\[ x_2 \approx -0.5625 \][/tex]
Rounding to the hundredths place:
[tex]\[ x_2 \approx -0.56 \][/tex]
Thus, the other solution is [tex]\(-0.56\)[/tex].
Hence, the correct answer is:
[tex]\[ \boxed{-0.56} \][/tex]
We value your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Thank you for trusting IDNLearn.com with your questions. Visit us again for clear, concise, and accurate answers.